精英家教網(wǎng)已知邊長為2的正方形OABC在直角坐標(biāo)系中,(如圖)OA與y軸的夾角為30°,求點(diǎn)A、點(diǎn)C、點(diǎn)B的坐標(biāo).
分析:由OA與y軸的夾角為30°,正方形的邊長,根據(jù)三角函數(shù)值可將點(diǎn)A和點(diǎn)C的坐標(biāo)直接求出,將點(diǎn)B的坐標(biāo)設(shè)出,根據(jù)點(diǎn)B到點(diǎn)A和點(diǎn)O的距離,列出方程組,可將點(diǎn)B的坐標(biāo)求出.
解答:精英家教網(wǎng)解:過點(diǎn)A作AM⊥y軸于點(diǎn)M.
∵OA與y軸的夾角為30°,OA=OC=2,
∴AM=2×sin30°=1,OM=2×cos30°=
3
,
故點(diǎn)A的坐標(biāo)為(1,
3
);
過點(diǎn)C作CN⊥x軸于點(diǎn)N.
∵OC與x軸的夾角為30°,
∴ON=2×cos30°=
3
,CN=2×sin30°=1,
故點(diǎn)C的坐標(biāo)為(-
3
,1).
設(shè)點(diǎn)B的坐標(biāo)為(a,b),
過B作BE⊥x軸,交x軸于點(diǎn)E,過C作CD⊥BE,交BE于點(diǎn)D,如圖所示:
∵OB=2
2
,BD=b-1,CD=
3
+a,
a2+b2=(2
2
)
2
(a+
3
)
2
+(b-1)2=22
,
解得:b=
3
+1(舍負(fù)值),a=1-
3
,
∴點(diǎn)B的坐標(biāo)為(1-
3
,1+
3

∴A(1,
3
)、B(1-
3
,1+
3
)、C(-
3
,1).
點(diǎn)評(píng):本題主要是根據(jù)三角函數(shù)值將點(diǎn)A和點(diǎn)C的值求出,在根據(jù)兩點(diǎn)之間的距離,列出方程組可將點(diǎn)B的坐標(biāo)求出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知邊長為a的正方形ABCD,點(diǎn)E在AB上,點(diǎn)F在BC的延長線上,EF與AC交于點(diǎn)O,且AE=精英家教網(wǎng)CF.
(1)若a=4,則四邊形EBFD的面積為
 

(2)若AE=
13
AB,求四邊形ACFD與四邊形EBFD面積的比;
(3)設(shè)BE=m,用含m的式子表示△AOE與△COF面積的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知邊長為1的正方形在坐標(biāo)系中的位置,如圖∠α=75°,求D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知邊長為2的正方形ABCD,P是BC邊上一點(diǎn),E是BC邊延長線上一點(diǎn),過點(diǎn)P作PF⊥AP與∠DCE的平分線CF交于點(diǎn)F.AF與CD交于點(diǎn)G.
(1)求證:AP=PF;
(2)若AP=AG,試說明PG與CF有怎樣的位置關(guān)系,并求△APG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•桂林)如圖,已知邊長為4的正方形ABCD,P是BC邊上一動(dòng)點(diǎn)(與B、C不重合),連結(jié)AP,作PE⊥AP交∠BCD的外角平分線于E.設(shè)BP=x,△PCE面積為y,則y與x的函數(shù)關(guān)系式是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知邊長為4的正方形ABCD,點(diǎn)E在AB上,點(diǎn)F在BC的延長線上,EF與AC交于點(diǎn)H,且AE=CF=m,則四邊形EBFD的面積為
16
16
;△AHE與△CHF的面積的和為
2m
2m
(用含m的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案