如圖,平行于y軸的直尺(一部分)與雙曲線x>0)交于點A、C,與x軸交于點BD,連結AC.點A、B的刻度分別為5、2(單位:cm),直尺的寬度為2cm,OB=2 cm.

(1)求k的值;

(2)求經過A、C兩點的直線解析式.

 

【答案】

(1)6 (2)

【解析】

試題分析:(1)觀察圖形,讀直尺得 AB=3,OB=2 cm,所以點A的坐標是(2,3).點A在雙曲線上∴=6;

(2)點C的橫坐標是4 ,把=4代入=得,=,即C點坐標為(4,

設經過AC兩點的直線解析式=+,將A(2,3)、C(4,)代入,

 ,解得,∴經過A、C兩點的直線解析式

考點:雙曲線和求直線解析式

點評:本題考查雙曲線和求直線解析式,掌握雙曲線的性質和會用待定系數(shù)法求直線解析式

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2數(shù)學公式相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆重慶萬州區(qū)巖口復興學校九年級下第一次月考數(shù)學試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當點P到達點B時,直線也隨即停止運動.

(1)求出點C的坐標;
(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關于t的函數(shù)關系式及t的
范圍;并求出當四邊形OPEM的面積y的最大值?
(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年江蘇省揚州市邗江區(qū)九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線與x軸交于點A(—2,0),交y軸于點B(0,).直過點A與y軸交于點C,與拋物線的另一個交點是D.

(1)求拋物線與直線的解析式;

(2)設點P是直線AD下方的拋物線上一動點(不與點A、D重合),過點P作 y軸的平行線,交直線AD于點M,作DE⊥y軸于點E.探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形?若存在請求出點P的坐標;若不存在,請說明理由;

(3)在(2)的條件下,作PN⊥AD于點N,設△PMN的周長為m,點P的橫坐標為x,求m與x的函數(shù)關系式,并求出m的最大值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年重慶萬州區(qū)巖口復興學校九年級下第一次月考數(shù)學試卷(解析版) 題型:解答題

已知:直角梯形AOBC在平面直角坐標系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當點P到達點B時,直線也隨即停止運動.

(1)求出點C的坐標;

(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若

用y表示四邊形OPEM的面積 ,直接寫出y關于t的函數(shù)關系式及t的

范圍;并求出當四邊形OPEM的面積y的最大值?

(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?

若有,請求出所有滿足要求的t值.

 

查看答案和解析>>

同步練習冊答案