【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點F、G,若BGBA=48,F(xiàn)G=,DF=2BF,求AH的值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)欲證明BE是⊙O的切線,只要證明∠EBD=90°.
(2)由△ABC∽△CBG,得求出BC,再由△BFC∽△BCD,得=BFBD求出BF,CF,CG,GB,再通過計算發(fā)現(xiàn)CG=AG,進而可以證明CH=CB,求出AC即可解決問題.
試題解析:(1)連接CD,∵BD是直徑,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切線.
(2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,∵∠CBG=∠ABC
∴△ABC∽△CBG,∴,即=BGBA=48,∴BC=,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴=BFBD,∵DF=2BF,∴BF=4,在RT△BCF中,CF==,∴CG=CF+FG=,在RT△BFG中,BG==,∵BGBA=48,∴BA=,即AG=,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=,∵△ABC∽△CBG,∴,∴AC==,∴AH=AC﹣CH=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BD是⊙O的直徑時(如圖2),求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x 的函數(shù),自變量x的取值范圍是x >0,下表是y與x 的幾組對應(yīng)值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.
下面是小騰的探究過程,請補充完整:
(1)如圖,在平面直角坐標系中,描出了以上表中各對對應(yīng)值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應(yīng)的函數(shù)值y約為________;
②該函數(shù)的一條性質(zhì):__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是的中點,AE⊥AC于A,與⊙O及CB的延長線交于點F、E,且.
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com