如圖,△BCD,△ACE都是等邊三角形,求證:BE=AD.

證明:∵△ABC和△ECD是等邊三角形,
∴∠ACE=∠BCD=60°,BC=AC,EC=CD.
∴∠BCD+∠ACB=∠ACE+∠ACB,
即∠BCE=∠ACD.
在△BCE和△ACD中,

∴△BCE≌△ACD(SAS).
∴BE=AD.
分析:根據(jù)等邊三角形各邊長(zhǎng)相等和各內(nèi)角為60°的性質(zhì),可以證明△BCE≌△ACD,根據(jù)全等三角形對(duì)應(yīng)邊相等的性質(zhì)可得BE=AD.
點(diǎn)評(píng):本題考查了全等三角形的判定和全等三角形對(duì)應(yīng)邊相等的性質(zhì),等邊三角形各邊長(zhǎng)相等、各內(nèi)角為60°的性質(zhì),本題中求證△BCE≌△ACD是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△BCD,△ACE都是等邊三角形,求證:BE=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、如圖,△BCD是由△ABD旋轉(zhuǎn)而成的,其中AB=CD,AD=BC,則旋轉(zhuǎn)中心是點(diǎn)
BD的中點(diǎn)
,旋轉(zhuǎn)角是
180
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,∠BCD=
∠BCA
+
∠DCA
,∠DCA=
∠DCB
-
∠ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖:△BCD和△ACE是等邊三角形.求證:BE=DA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BCD是一條直線,∠A=75°,∠1=53°,∠2=75°,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案