【題目】如圖,在小正形的邊長(zhǎng)均為1的方格紙中,線段AB,點(diǎn)A,B均在小正方形的頂點(diǎn)上.

(1)在圖①中畫出平行四邊形ABCD,且四邊形ABCD的面積為6,點(diǎn)C、D均在小正方形的頂點(diǎn)上;

(2)在圖②中畫出一個(gè)△ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且BCBA,請(qǐng)直接寫出∠BCA的余弦值.

【答案】(1)圖形見(jiàn)解析;(2)圖形見(jiàn)解析;∠BCA的余弦值為.

【解析】

(1)根據(jù)四邊形ABCD是中心對(duì)稱圖形,且四邊形ABCD的面積為6,點(diǎn)C,D均在小正方形的頂點(diǎn)上進(jìn)行畫圖即可;

(2)根據(jù)BCBA,可得ABC為等腰三角形,根據(jù)等腰三角形的性質(zhì)以及勾股定理進(jìn)行計(jì)算,即可得到∠BCA的余弦值.

(1)如圖1所示,平行四邊形ABCD即為所求;

(2)如圖②所示,ABC即為所求;

過(guò)點(diǎn)BBFACF,則∠BFC90°,

由圖可得,BC,FC

RtBCF中,cosBCF,

即∠BCA的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC3:2,點(diǎn)A3,0),B06)分別在x軸,y軸上,反比例函數(shù)(x0)的圖像經(jīng)過(guò)點(diǎn)D,則值為( )

A. 14 B. 14 C. 7 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)某學(xué)校智慧方園數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:

如圖1,在ABC中,點(diǎn)O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長(zhǎng).

經(jīng)過(guò)社團(tuán)成員討論發(fā)現(xiàn),過(guò)點(diǎn)BBDAC,交AO的延長(zhǎng)線于點(diǎn)D,通過(guò)構(gòu)造ABD就可以解決問(wèn)題(如圖2).

請(qǐng)回答:∠ADB=   °,AB=   

(2)請(qǐng)參考以上解決思路,解決問(wèn)題:

如圖3,在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形DEFG的頂點(diǎn)D、EABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上.如果BC=4,ABC的面積是6,那么這個(gè)正方形的邊長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160花卉的平均每盆利潤(rùn)是19,調(diào)研發(fā)現(xiàn):

①盆景每增加1,盆景的平均每盆利潤(rùn)減少2;每減少1,盆景的平均每盆利潤(rùn)增加2;②花卉的平均每盆利潤(rùn)始終不變.

小明計(jì)劃第二期培植盆景與花卉共100設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí)第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是二次函數(shù)圖象的一部分,在下列結(jié)論中:①;②;③有兩個(gè)相等的實(shí)數(shù)根;④;其中正確的結(jié)論有( 。

A.1個(gè)B.2 個(gè)C.3 個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ABC=90°,以AB為直徑作O,點(diǎn)DO上一點(diǎn),且CD=CB,連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E,連接OC.

(1) 判斷直線CDO的位置關(guān)系,并說(shuō)明理由;

(2) BE=,DE=3,求O的半徑及AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù),其中

1)若函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,6),求函數(shù)的表達(dá)式;

2)若一次函數(shù)的圖象與的圖象經(jīng)過(guò)x軸上同一點(diǎn),探究實(shí)數(shù)滿足的關(guān)系式;

3)已知點(diǎn)在函數(shù)的圖象上,若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為的網(wǎng)格中,的頂點(diǎn),均在格點(diǎn)上,邊上的一點(diǎn).

(Ⅰ)線段的值為______________;

(Ⅱ)在如圖所示的網(wǎng)格中,的角平分線,在上求一點(diǎn),使的值最小,請(qǐng)用無(wú)刻度的直尺,畫出和點(diǎn),并簡(jiǎn)要說(shuō)明和點(diǎn)的位置是如何找到的(不要求證明)___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案