【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù),其中

1)若函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,6),求函數(shù)的表達(dá)式;

2)若一次函數(shù)的圖象與的圖象經(jīng)過(guò)x軸上同一點(diǎn),探究實(shí)數(shù),滿足的關(guān)系式;

3)已知點(diǎn)在函數(shù)的圖象上,若,求的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
2)根據(jù)函數(shù)圖象上的點(diǎn)滿足函數(shù)解析式,可得答案;
3)根據(jù)二次函數(shù)的性質(zhì),可得答案.

解:(1)∵函數(shù)的圖象經(jīng)過(guò)點(diǎn)(26)

∴把點(diǎn)(2,6)代入可得

解得(舍去)

∴函數(shù)的表達(dá)式為

綜上所述:函數(shù)的表達(dá)式

2)當(dāng)時(shí),解得,

的圖象與軸的交點(diǎn)是 ,

當(dāng)經(jīng)過(guò)時(shí),,即

當(dāng)經(jīng)過(guò)時(shí),,即;

3)拋物線的對(duì)稱軸為直線

∵二次項(xiàng)系數(shù)1>0,開(kāi)口向上,

(-1)(0,)關(guān)于對(duì)稱軸對(duì)稱,

,根據(jù)拋物線的圖像性質(zhì)可得:的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,,上一點(diǎn),內(nèi)心,,.

(1)求證:的切線;

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在小正形的邊長(zhǎng)均為1的方格紙中,線段AB,點(diǎn)AB均在小正方形的頂點(diǎn)上.

(1)在圖①中畫出平行四邊形ABCD,且四邊形ABCD的面積為6,點(diǎn)C、D均在小正方形的頂點(diǎn)上;

(2)在圖②中畫出一個(gè)△ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且BCBA,請(qǐng)直接寫出∠BCA的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于二次函數(shù)的說(shuō)法錯(cuò)誤的是(  )

A.拋物線y=﹣2x2+3x+1的對(duì)稱軸是直線

B.函數(shù)y2x2+4x3的圖象的最低點(diǎn)在(﹣1,﹣5

C.二次函數(shù)y=(x+22+2的頂點(diǎn)坐標(biāo)是(﹣2,2

D.點(diǎn)A30)不在拋物線yx22x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線經(jīng)過(guò)點(diǎn),且滿足9a+3b+c<0,以下結(jié)論:①a+b0;②4a+c0;③對(duì)于任何x,都有;④.其中正確的結(jié)論是(  )

A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊ACBC上)

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為   ;

當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為   ;

2)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF△ABC相似嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張準(zhǔn)備給長(zhǎng)方形客廳鋪設(shè)瓷磚,已知客廳長(zhǎng)AB8m,寬BC6m,現(xiàn)將其劃分成一個(gè)長(zhǎng)方形EFGH區(qū)域I和環(huán)形區(qū)域Ⅱ,區(qū)域Ⅰ用甲、乙瓷磚鋪設(shè),其中甲瓷磚鋪設(shè)成的是兩個(gè)全等的菱形圖案,區(qū)域Ⅱ用丙瓷磚鋪設(shè),如圖所示,已知NGH中點(diǎn),點(diǎn)M在邊HE上,HN3HM,設(shè)HMxm).

1)用含x的代數(shù)式表示以下數(shù)量.鋪設(shè)甲瓷磚的面積為   m2,鋪設(shè)丙瓷磚的面積為   m2

2)若甲、乙、丙瓷磚單價(jià)分別為300/m2,200/m2100/m2,且EFFG+2,鋪設(shè)好整個(gè)客廳,三種瓷磚總價(jià)至少需要多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AB為直徑的⊙O外接于ABC,過(guò)A點(diǎn)的切線APBC的延長(zhǎng)線交于點(diǎn)PAPB的平分線分別交AB,AC于點(diǎn)DE,其中AEBDAEBD)的長(zhǎng)是一元二次方程x2﹣5x+6=0的兩個(gè)實(shí)數(shù)根.

(1)求證:PABD=PBAE;

(2)在線段BC上是否存在一點(diǎn)M,使得四邊形ADME是菱形?若存在,請(qǐng)給予證明,并求其面積;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓O中,弦AB8,點(diǎn)C在圓O(CAB不重合),連接CACB,過(guò)點(diǎn)O分別作ODACOEBC,垂足分別是點(diǎn)DE

(1)求線段DE的長(zhǎng);

(2)點(diǎn)OAB的距離為3,求圓O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案