【題目】如圖,在平面直角坐標系中,已知,三點,其中a= b,c滿足關(guān)系式,P是第二象限內(nèi)一點,連接PO,且PA、C三點在一條直線上.

1)求A、BC三點的坐標;

2)若規(guī)定:在三角形中,若兩條邊相等,則這兩條邊與第三邊的夾角相等。如在DEF中,DE=DF,則∠E=∠F.在本圖中若PA=PO,AB=AC,CBOB,垂足為B.求證:ABPO.

3)如果在第二象限內(nèi)有一點P(-2,),求四邊形POBC的面積.

【答案】1A0,2)、B3,0)、C3,4);(2)證明見解析;(311.

【解析】

1)由a=可求出a的值,用非負數(shù)的性質(zhì)求解可得bc的值,進而確定A、B、C三點坐標;

2)由題意得∠POA=PAO,∠ACB=ABC,再根據(jù)平行線的性質(zhì)可得∠CBA=OAB=POA,從而可證結(jié)論;

3)求出POA和梯形AOBC的面積即可得出結(jié)論.

1)∵a=,,

a=2,b=3,c=4,

A02)、B30)、C34);

2)∵PA=PO,AB=AC,

∴∠POA=PAO,∠ACB=ABC,

CBOB

OABC,

∴∠PAO=ACB,∠CBA=OAB,

∴∠POA=CBA

∴∠POA=OAB,

ABPO;

2)∵P(-2),A02)、B3,0)、C34

∴△PAO的面積=,梯形AOBC的面積=,

∴四邊形POBC的面積=2+9=11.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD,AB10BC13,點P為邊AD上一動點,點A’與點A關(guān)于BP對稱,連結(jié)A’C,當A’BC為等腰三角形時,AP的長度為()

A.2B.C.2D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黨的十六大提出全面建設(shè)小康社會,加快推進社會主義現(xiàn)代化,力爭國民生產(chǎn)總值到2020年比2000年翻兩番(翻一番表示為原來的2倍)在本世紀的頭二十年(2001~2020年),要實現(xiàn)這一目標,以十年為單位計算,設(shè)每個十年的國民生產(chǎn)總值的增長率都是,那么滿足的方程為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖17Z11,小紅同學要測量A,C兩地的距離,A,C之間有一水池,不能直接測量,于是她在A,C同一水平面上選取了一點B,B可直接到達A,C兩地她測量得到AB80,BC20,ABC120°.請你幫助小紅同學求出A,C兩地之間的距離(結(jié)果精確到1,參考數(shù)據(jù): ≈4.6)

17Z11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學對七年級學生數(shù)學學期成績的評價規(guī)定如下:學期評價得分由期中測試成績(滿分150)和期末測試成績(滿分150)兩部分組成,其中期中測試成績占30%,期末測試成績占70%,當學期評價得分大于或等于130分時,該生數(shù)學學期成績評價為優(yōu)秀.(注:期中、期末成績分數(shù)取整數(shù))

(1)小明的期中成績和期末測試成績兩項得分之和為260分,學期評價得分為132分,則小明期中測試成績和期末測試成績各得多少分?

(2)某同學期末測試成績?yōu)?/span>120分,他的綜合評價得分有可能達到優(yōu)秀嗎?為什么?

(3)如果一個同學學期評價得分要達到優(yōu)秀,他的期末測試成績至少要多少分(結(jié)果保留整數(shù))?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點ABD的距離分別為1,,△ADP沿點A旋轉(zhuǎn)至△ABP′,連結(jié)PP′,并延長APBC相交于點Q

1)求證:△APP′是等腰直角三角形;

2)求∠BPQ的大;

3)求CQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程kx2-4x+2=0有實數(shù)根.

1)求k的取值范圍;

2)若ABC中,AB=AC=2,AB、BC的長是方程kx2-4x+2=0的兩根,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(PB、C不重合),連接AP,過點BBQAPCD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′BA的延長線于點M

(1)試探究APBQ的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)AB=3,BP=2PC,求QM的長;

(3)BP=mPC=n時,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一元二次方程中,若系數(shù)可在0,1,23中取值,則其中有實數(shù)解的方程的個數(shù)是___ 個,寫出其中有兩個相等實數(shù)根的一元二次方程_________.

查看答案和解析>>

同步練習冊答案