【題目】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為3,若在數(shù)軸上存在點(diǎn)P,使得AP+BP=m,則稱點(diǎn)P為點(diǎn)AB“m級(jí)精致點(diǎn),例如,原點(diǎn)O表示的數(shù)為0,則AO+BO=3+3=6,則稱點(diǎn)O為點(diǎn)A和點(diǎn)B“6級(jí)精致點(diǎn),根據(jù)上述規(guī)定,解答下列問題:

1)若點(diǎn)C軸在數(shù)軸上表示的數(shù)為﹣5,點(diǎn)C為點(diǎn)A和點(diǎn)B“m級(jí)精致點(diǎn),則m=

2)若點(diǎn)D是數(shù)軸上點(diǎn)A和點(diǎn)B“8級(jí)精致點(diǎn),求點(diǎn)D表示的數(shù);

3)如圖,數(shù)軸上點(diǎn)E和點(diǎn)F分別表示的數(shù)是﹣24,若點(diǎn)G是點(diǎn)E和點(diǎn)F“m級(jí)精致點(diǎn),且滿足GE=3GF,求m的值.

【答案】110;(2D表示的數(shù)為4-4;(3 m的值為612

【解析】

1)根據(jù)m級(jí)精致點(diǎn)的概念,求出AC+BC的值,則可求出m的值;

2)根據(jù)精致點(diǎn)的概念,可得AD+BD=8,求出數(shù)軸上到點(diǎn)A,點(diǎn)B的距離之和為8的點(diǎn);

3)由GE=3GF可得,點(diǎn)G在線段EF上或點(diǎn)F右側(cè),分兩種情況求解.

解:(1)由題意可知:點(diǎn)C為點(diǎn)A和點(diǎn)B“m級(jí)精致點(diǎn),

AC+BC=2+8=10,

m=10.

2)∵點(diǎn)D是數(shù)軸上點(diǎn)A和點(diǎn)B“8級(jí)精致點(diǎn),

AD+BD=8,設(shè)點(diǎn)D表示的數(shù)為x,

當(dāng)點(diǎn)D在點(diǎn)A左側(cè)時(shí),

AD+BD=[(-3-x+3-x=8

解得:x=-4,

當(dāng)點(diǎn)D在點(diǎn)B右側(cè)時(shí),

AD+BD=x--3)]+x-3=8,

解得:x=4,

∴點(diǎn)D的坐標(biāo)為(4,0)或(-4,0.

3)∵GE=3GF,根據(jù)精致點(diǎn)的定義,設(shè)點(diǎn)G表示的數(shù)為y,

當(dāng)點(diǎn)G在線段EF上時(shí),

GE=3GF,即y--2=3×4-y),

解得:y=,

此時(shí)m=--2+4-=6;

當(dāng)點(diǎn)G在點(diǎn)F右側(cè)時(shí),

GE=3GF,即y--2=3×y-4),

解得:y=7,

此時(shí)m=7--2+7-4=12

綜上:m=612.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結(jié)論:①AD=BC;②BDAC互相平分;四邊形ACED是菱形.其中正確的個(gè)數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+k2+k0

1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

2)若ABC的兩邊AB,AC的長是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長為5,

①若ABC是以BC為斜邊的直角三角形,求k的值.

②若ABC是等腰三角形,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,

1)請(qǐng)以ABBC為鄰邊用兩種不同的方法畫平行四邊形ABCD,并說明此畫法的合理性(不寫作法,保留作圖痕跡.);

2)在上述畫出的平行四邊形中,若,,,求對(duì)角線BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運(yùn)動(dòng)商城的自行車銷售量自2017年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷售自行車64輛,3月份銷售了100輛.

(1)若該商城前4個(gè)月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?

(2)考慮到自行車需求不斷增加,該商城準(zhǔn)備投入3萬元再購進(jìn)一批兩種規(guī)格的自行車,已知A型車的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷售經(jīng)驗(yàn),A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設(shè)所進(jìn)車輛全部售完,為使利潤最大,該商城應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=25cmBC=54cm,CD=30cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點(diǎn)MN在邊BC上且面積最大的矩形PQMN,則該矩形的面積為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12,第2次輸出的結(jié)果是6,第3次輸出的結(jié)果是__________,依次繼續(xù)下去……2 016次輸出的結(jié)果是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小天家、小亮家、學(xué)校依次在同一條筆直的公路旁(各自到公路的距離忽略不計(jì)),每天早上7點(diǎn)整小天都會(huì)從家出發(fā)以每分鐘60米的速度走到距他家600米的小亮家,然后兩人以小天同樣的速度準(zhǔn)時(shí)在730到校早讀.某日早上7點(diǎn)過,小亮在家等小天的時(shí)候突然想起今天輪到自己值日掃地了,所以就以每分鐘60米的速度先向?qū)W校走去,后面打算再和小天解釋,小天來到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考時(shí)間忽略不計(jì)),于是他就以每分鐘100米的速度去追小亮,兩人之間的距離y(米)及小亮出發(fā)的時(shí)間x(分)之間的函數(shù)關(guān)系如下圖所示.請(qǐng)問當(dāng)小天追上小亮?xí)r離學(xué)校還有_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點(diǎn)E、F分別是邊BC、AC的中點(diǎn),PAB上一點(diǎn),以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為(  )

A. 3 B. 3 C. 4 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案