【題目】如圖,數(shù)軸上點A表示的數(shù)為﹣3,點B表示的數(shù)為3,若在數(shù)軸上存在點P,使得AP+BP=m,則稱點P為點A和B的“m級精致點”,例如,原點O表示的數(shù)為0,則AO+BO=3+3=6,則稱點O為點A和點B的“6級精致點”,根據上述規(guī)定,解答下列問題:
(1)若點C軸在數(shù)軸上表示的數(shù)為﹣5,點C為點A和點B的“m級精致點”,則m= ;
(2)若點D是數(shù)軸上點A和點B的“8級精致點”,求點D表示的數(shù);
(3)如圖,數(shù)軸上點E和點F分別表示的數(shù)是﹣2和4,若點G是點E和點F的“m級精致點”,且滿足GE=3GF,求m的值.
【答案】(1)10;(2)D表示的數(shù)為4或-4;(3) m的值為6或12
【解析】
(1)根據m級精致點的概念,求出AC+BC的值,則可求出m的值;
(2)根據精致點的概念,可得AD+BD=8,求出數(shù)軸上到點A,點B的距離之和為8的點;
(3)由GE=3GF可得,點G在線段EF上或點F右側,分兩種情況求解.
解:(1)由題意可知:點C為點A和點B的“m級精致點”,
則AC+BC=2+8=10,
∴m=10.
(2)∵點D是數(shù)軸上點A和點B的“8級精致點”,
∴AD+BD=8,設點D表示的數(shù)為x,
當點D在點A左側時,
AD+BD=[(-3)-x]+(3-x)=8
解得:x=-4,
當點D在點B右側時,
AD+BD=[x-(-3)]+(x-3)=8,
解得:x=4,
∴點D的坐標為(4,0)或(-4,0).
(3)∵GE=3GF,根據精致點的定義,設點G表示的數(shù)為y,
當點G在線段EF上時,
GE=3GF,即y-(-2)=3×(4-y),
解得:y=,
此時m=-(-2)+(4-)=6;
當點G在點F右側時,
GE=3GF,即y-(-2)=3×(y-4),
解得:y=7,
此時m=7-(-2)+(7-4)=12,
綜上:m=6或12.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結論:①AD=BC;②BD、AC互相平分;③四邊形ACED是菱形.其中正確的個數(shù)是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根.第三邊BC的長為5,
①若△ABC是以BC為斜邊的直角三角形,求k的值.
②若△ABC是等腰三角形,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,.
(1)請以AB、BC為鄰邊用兩種不同的方法畫平行四邊形ABCD,并說明此畫法的合理性(不寫作法,保留作圖痕跡.);
(2)在上述畫出的平行四邊形中,若,,,求對角線BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自2017年起逐月增加,據統(tǒng)計,該商城1月份銷售自行車64輛,3月份銷售了100輛.
(1)若該商城前4個月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?
(2)考慮到自行車需求不斷增加,該商城準備投入3萬元再購進一批兩種規(guī)格的自行車,已知A型車的進價為500元/輛,售價為700元/輛,B型車進價為1000元/輛,售價為1300元/輛.根據銷售經驗,A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設所進車輛全部售完,為使利潤最大,該商城應如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經測量AB=25cm,BC=54cm,CD=30cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一數(shù)值轉換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結果是12,第2次輸出的結果是6,第3次輸出的結果是__________,依次繼續(xù)下去……第2 016次輸出的結果是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小天家、小亮家、學校依次在同一條筆直的公路旁(各自到公路的距離忽略不計),每天早上7點整小天都會從家出發(fā)以每分鐘60米的速度走到距他家600米的小亮家,然后兩人以小天同樣的速度準時在7:30到校早讀.某日早上7點過,小亮在家等小天的時候突然想起今天輪到自己值日掃地了,所以就以每分鐘60米的速度先向學校走去,后面打算再和小天解釋,小天來到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考時間忽略不計),于是他就以每分鐘100米的速度去追小亮,兩人之間的距離y(米)及小亮出發(fā)的時間x(分)之間的函數(shù)關系如下圖所示.請問當小天追上小亮時離學校還有_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點E、F分別是邊BC、AC的中點,P是AB上一點,以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( 。
A. 3 B. 3 C. 4 D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com