如圖(1),在△ABC中,∠ACB=90°,AC=BC=,點(diǎn)D在AC上,點(diǎn)E在BC上,且CD=CE,連接DE.
(1)線段BE與AD的數(shù)量關(guān)系是______,位置關(guān)系是______.
(2)如圖(2),當(dāng)△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度α后,(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)繞點(diǎn)C繼續(xù)順時(shí)針旋轉(zhuǎn)△CDE,當(dāng)90°<α<180°時(shí),延長(zhǎng)DC交AB于點(diǎn)F,請(qǐng)?jiān)趫D(3)中補(bǔ)全圖形,并求出當(dāng)AF=1+時(shí),旋轉(zhuǎn)角α的度數(shù).

【答案】分析:(1)利用線段間的和差關(guān)系求得BE=AD,根據(jù)已知條件∠ACB=90°推知兩線段的位置關(guān)系;
(2)先延長(zhǎng)BE交AD于點(diǎn)M在△BCE和△ACD中,根據(jù)BC=AC,∠BCE=∠ACD,CE=CD,得出△BCE≌△ACD,從而證出BE=AD,再根據(jù)∠1=∠2,∠CAD=∠CBE,即可證出(1)中的結(jié)論仍然成立;
(3)先過(guò)點(diǎn)C作CN⊥AB于點(diǎn)N,根據(jù)已知條件得出CN=AN=AB=1,∠BCN=45°,得出FN=AF-AN=,再在Rt△CNF中,tan∠FCN==,得出∠BCF的度數(shù),從而證出∠BCE=∠BCF+∠FCE=105°,再求出AF的值,從而得出角α的度數(shù).
解答:解:(1)∵AC=BC=,CD=CE,
∴BE=AD,
∵∠ACB=90°,
∴AC⊥BC,
∴BE⊥AD.

(2)仍然成立.
如圖(1),延長(zhǎng)BE交AD于點(diǎn)M.
在△BCE和△ACD中,BC=AC,∠BCE=∠ACD=α,CE=CD,
∴△BCE≌△ACD.
∴BE=AD.
∵∠1=∠2,∠CAD=∠CBE,∴∠AMB=∠ACB=90°.
即 BE⊥AD.

(3)如圖(2),過(guò)點(diǎn)C作CN⊥AB于點(diǎn)N,
∵AC=BC=,∠ACB=90°,
∴CN=AN=AB=1,∠BCN=45°.
∵AF=1+,
∴FN=AF-AN=
在Rt△CNF中,tan∠FCN==,
∴∠FCN=30°.
∴∠BCF=∠BCN-∠FCN=15°.
∵∠FCE=90°,
∴∠BCE=∠BCF+∠FCE=105°.
∴當(dāng)AF=1+時(shí),旋轉(zhuǎn)角α為105°.
點(diǎn)評(píng):此題考查了解等腰直角三角形;熟練運(yùn)用旋轉(zhuǎn)的性質(zhì),全等三角形的判斷與性質(zhì),銳角三角函數(shù)值等知識(shí)點(diǎn)進(jìn)行解答即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖a,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與原點(diǎn)重合,對(duì)角線BD所在直線函數(shù)式為y=
34
x
,AD=8,矩形ABCD沿DB方向以每秒一個(gè)單位長(zhǎng)度運(yùn)動(dòng),同時(shí)點(diǎn)P從點(diǎn)A出發(fā)做勻速運(yùn)動(dòng),沿矩形ABCD的邊經(jīng)B到達(dá)終點(diǎn)C,用了14秒.
(1)求矩形ABCD周長(zhǎng);
(2)如圖b,當(dāng)P到達(dá)B時(shí),求點(diǎn)P坐標(biāo);
(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)時(shí),過(guò)點(diǎn)P作x軸、y軸的垂線,垂足分別為E、F,
①如圖c,當(dāng)P在BC上運(yùn)動(dòng)時(shí),矩形PEOF的邊能否與矩形ABCD的邊對(duì)應(yīng)成比例?若能,求出時(shí)間t的值,若不能,說(shuō)明理由;
②如圖d,當(dāng)P在AB上運(yùn)動(dòng)時(shí),矩形PEOF的面積能否等于256?若能,求出時(shí)間t的值,若不能,說(shuō)明理由;
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、如圖,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他有沒(méi)有帶量角器,只帶了一副三角尺,于是他想了這樣一個(gè)辦法:首先連接CF,再找出CF的中點(diǎn)O,然后連接EO并延長(zhǎng)EO和直線AB相交于點(diǎn)B,經(jīng)過(guò)測(cè)量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF.以下是他的想法,請(qǐng)你填上根據(jù).
小華是這樣想的:因?yàn)镃F和BE相交于點(diǎn)O,
根據(jù)
對(duì)頂角相等
得出∠COB=∠EOF;
而O是CF的中點(diǎn),那么CO=FO,又已知EO=BO,
根據(jù)
兩邊對(duì)應(yīng)相等且?jiàn)A角相等的兩三角形全等
得出△COB≌△FOE,
根據(jù)
全等三角形對(duì)應(yīng)邊相等
得出BC=EF,
根據(jù)
全等三角形對(duì)應(yīng)角相等
得出∠BCO=∠F,
既然∠BCO=∠F根據(jù)
內(nèi)錯(cuò)角相等,兩直線平行
、得出AB∥DF,
既然AB∥DF,根據(jù)
兩直線平行,同旁內(nèi)角互補(bǔ)
.得出∠ACE和∠DEC互補(bǔ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖1,直角梯形ABCD,AB⊥BC,AB=BC=nAD,AE⊥BD于點(diǎn)E,過(guò)E作CE的垂線交直線AB于點(diǎn)F.
(1)當(dāng)n=4時(shí),則
AE
BE
=
 
,
ED
BE
=
 

(2)當(dāng)n=2時(shí),求證:BF=AF;
(3)如圖2,F(xiàn)點(diǎn)在AB的延長(zhǎng)線上,當(dāng)n=
 
時(shí),B為AF的中點(diǎn);如圖3,將圖形1中的線段AD沿AB翻折,其它條件不變,此時(shí)F點(diǎn)在AB的反向延長(zhǎng)線上,當(dāng)n=
 
時(shí),A為BF的中點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

Rt△ABC中,AC=BC,P為直線AB上一點(diǎn),以CP為邊作正方形CPED,連CE.
(1)如圖1,當(dāng)P為AB的中點(diǎn),A、E重合時(shí),BP2、AP2、CE2之間的關(guān)系是
BP2+AP2=CE2
BP2+AP2=CE2

(2)如圖2,當(dāng)P在AB上運(yùn)動(dòng)時(shí),探究BP,AP,CE之間的關(guān)系.
(3)如圖3,當(dāng)P在AB的延長(zhǎng)線上時(shí),作出圖形,并指出②中結(jié)論是否成立?(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

同學(xué)們都知道,平面內(nèi)兩條直線的位置關(guān)系只有相交和平行兩種.
已知AB∥CD.如圖1,點(diǎn)P在AB、CD外部時(shí),由AB∥CD,有∠B=∠BOD,又因?yàn)椤螧OD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.
(1)已知AB∥CD.如圖2,點(diǎn)P在AB、CD內(nèi)部時(shí),上述結(jié)論是否成立?若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請(qǐng)你說(shuō)明你的結(jié)論;
(2)在圖2中,將直線AB繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖3,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?說(shuō)明理由;
(3)利用第(2)小題的結(jié)論求圖4中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案