在□ABCD中,∠A∶∠B∶∠C=2∶3∶2,則∠D的度數(shù)為( )

A.36°             B.60°             C.72°             D.108°

 

【答案】

D

【解析】

試題分析:根據(jù)平行四邊形的性質(zhì)可得∠A+∠B=180°,由∠A∶∠B=2∶3即可求得∠B的度數(shù),從而可以求得結果.

∵□ABCD

∴∠A+∠B=180°

∵∠A∶∠B=2∶3

∴∠B=108°

∴∠D=∠B=108°

故選D.

考點:平行四邊形的性質(zhì)

點評:平行四邊形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、在?ABCD中,若∠A=3∠B,則∠D=
45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,E、F分別為邊AB、CD的中點,連接DE、BF、BD.
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BEDF是平行四邊形;
(3)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,EF∥AB,MN∥BC,MN與EF交于點O,且O點在對角線上,圖中面積相等的四邊形有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,BD為對角線,EF垂直平分BD分別交AD、BC的于點E、F,交BD于點O.

(1)試說明:BF=DE;
(2)試說明:△ABE≌△CDF;
(3)如果在?ABCD中,AB=5,AD=10,有兩動點P、Q分別從B、D兩點同時出發(fā),沿△BAE和△DFC各邊運動一周,即點P自B→A→E→B停止,點Q自D→F→C→D停止,點P運動的路程是m,點Q運動的路程是n,當四邊形BPDQ是平行四邊形時,求m與n滿足的數(shù)量關系.(畫出示意圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,點E在邊BC上,點F在BC的延長線上,且BE=CF.
(1)求證:∠BAE=∠CDF.
(2)判斷四邊形AEFD的形狀并說明理由.

查看答案和解析>>

同步練習冊答案