【題目】有這樣一個問題:

計算代數(shù)式(其中x≠0)的值后填入下表.并根據(jù)表格所反映出的(其中x≠0)的值與x之間的變化規(guī)律進行探究.

x

……

0.25

0.5

1

10

100

1000

10000

……

……

……

下面是小東計算代數(shù)式(其中x≠0)的值后填入表格,并根據(jù)表格進行探究的過程,請補充完整:

x

……

0.25

0.5

1

10

100

1000

10000

……

……

2

1

……

(1)上表是(其中x≠0)與x的幾組對應(yīng)值.直接寫出x=10時,求代數(shù)式的值;

(2)隨著x值的增大,代數(shù)式的值有何變化回答增大減少”);

(3)當x值無限增大時,代數(shù)式的值無限趨近于一個數(shù),這個數(shù)是多少

【答案】(1);(2)減少;(3)0.

【解析】

(1)把x=10代入 ,即可得到結(jié)論;

(2)根據(jù)表中數(shù)據(jù)即可得到結(jié)論;

(3)根據(jù)表中數(shù)據(jù)的變化趨勢即可得到結(jié)論.

(1)當x=10時,

故答案為:.

(2)隨著x值的增大,代數(shù)式的值減少;

故答案為:減小.

(3)當x值無限增大時,代數(shù)式的值無限趨近于一個數(shù),這個數(shù)是0.

故答案為:0.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(-3,2).

(1)直接寫出點E的坐標;

(2)在四邊形ABCD中,點P從點B出發(fā),沿“BC→CD”移動.若點P的速度為每秒1個單位長度,運動時間為t秒,回答下列問題:

①當t等于多少秒時,點P的橫坐標與縱坐標互為相反數(shù);

②求點P在運動過程中的坐標,(用含t的式子表示,寫出過程);

③當3秒<t<5秒時,設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩直線AB,CD相交于點OOE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度數(shù)

(2)OFOE,COF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABD中,∠A=90°,將斜邊BD繞點B順時針方向旋轉(zhuǎn)至BC,使BC∥AD,過點C作CE⊥BD于點E.
(1)求證:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y= (x>0,k是常數(shù))的圖象經(jīng)過A(2,6),B(m,n),其中m>2.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,AC與BD交于點E,連結(jié)AD,DC,CB.

(1)若△ABD的面積為3,求k的值和直線AB的解析式;
(2)求證: = ;
(3)若AD∥BC,求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)的圖像與x軸交于點A(1,0),與y軸交于點B(0,-2).

(1)一次函數(shù)的函數(shù)關(guān)系式;

(2)若直線AB上有一點C,且△BOC的面積為2,求點C 的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù):10,15,10,17,18,20.對于這組數(shù)據(jù),下列說法錯誤的是(
A.平均數(shù)是15
B.眾數(shù)是10
C.中位數(shù)是17
D.方差是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,點O為斜邊AB的中點,點D、E分別在直角邊AC、BC上,且∠DOE=90°,DEOC于點P,則下列結(jié)論:

圖中全等三角形有三對;②△ABC的面積等于四邊形CDOE面積的倍;③DE2+2CDCE=2OA2;④AD2+BE2=2OPOC.正確的有(  )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學決定在八年級陽光體育“大課間”活動中開設(shè)A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學生?
(2)將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“立定跳遠”的5名學生中有3名男生,2名女生.現(xiàn)從這5名學生中任意抽取2名學生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.

查看答案和解析>>

同步練習冊答案