【題目】如圖,拋物線(xiàn)與軸交于兩點(diǎn),與軸交于點(diǎn)連接,已知,且,
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)為直線(xiàn)下方拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)作軸交于點(diǎn),連接
①若,求此時(shí)點(diǎn)的坐標(biāo);
②若點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)恰好落在軸上,求此時(shí)點(diǎn)的坐標(biāo).
【答案】(1)y=x2x-3;(2)①點(diǎn)D坐標(biāo)為(1,)或(3,-3);②點(diǎn)D坐標(biāo)為(,).
【解析】
(1)設(shè)拋物線(xiàn)解析式為y=ax2+bx+c(a≠0),由C點(diǎn)坐標(biāo)可得OC的長(zhǎng),根據(jù)可求出BC的長(zhǎng),利用勾股定理可求出OB的長(zhǎng),即可得出點(diǎn)B坐標(biāo),把A、B、C三點(diǎn)坐標(biāo)代入y=ax2+bx+c,解方程組求出a、b、c的值即可得拋物線(xiàn)解析式;
(2)①由B、C坐標(biāo)可求出直線(xiàn)BC的解析式,設(shè)D(m,m2m-3),把m代入直線(xiàn)BC解析式可得點(diǎn)E縱坐標(biāo),根據(jù)列方程求出m的值即可得答案;
②根據(jù)軸對(duì)稱(chēng)的性質(zhì)可得∠E′CD=∠ECD,根據(jù)平行線(xiàn)的性質(zhì)可得∠E′CD=∠CDE,即可得出∠ECD=∠CDE,可得DE=CE,設(shè)D(n,n2n-3),則E(n,n-3),根據(jù)兩點(diǎn)間距離公式列方程求出n值即可得答案.
(1)設(shè)拋物線(xiàn)解析式為y=ax2+bx+c(a≠0),
∵C(0,-3),
∴OC=3,
∵,
∴BC==5,
∴OB==4,
∴B(4,0)
∵A(-1,0),
∴,
解得:,
∴拋物線(xiàn)的解析式為y=x2x-3.
(2)設(shè)D(m,m2m-3),
設(shè)直線(xiàn)BC的解析式為y=kx+b,
∴,
解得:,
∴直線(xiàn)BC的解析式為y=x-3,
∵DE //y軸,
∴點(diǎn)E坐標(biāo)為(m,m-3),
∵,
∴m-3-(m2m-3)=,
解得:m1=1,m2=3,
當(dāng)m=1時(shí),m2m-3=,
當(dāng)m=3時(shí),m2m-3=-3,
∴點(diǎn)D坐標(biāo)為(1,)或(3,-3).
(3)如圖,點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)恰好落在軸上,
∴∠E′CD=∠ECD,
∵DE//y軸,
∴∠E′CD=∠CDE,
∴∠ECD=∠CDE,
∴CE=DE,
設(shè)D(n,n2n-3),則E(n,n-3),
∵C(0,-3),
∴n-3-(n2n-3)==n,
解得:n1=,n2=0(舍去),
當(dāng)n=時(shí),n2n-3=,
∴點(diǎn)D坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)與軸交于點(diǎn)和點(diǎn).
(1)該拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)________;
(2)已知該拋物線(xiàn)的開(kāi)口向下,當(dāng)時(shí),的最大值是4,求此范圍內(nèi)的最小值.
(3)在(2)的條件下,直線(xiàn)過(guò)點(diǎn),且與該拋物線(xiàn)的另一個(gè)交點(diǎn)為點(diǎn),點(diǎn)為拋物線(xiàn)對(duì)稱(chēng)軸上的動(dòng)點(diǎn),當(dāng)為等腰三角形時(shí)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】宣和中學(xué)圖書(shū)館今日購(gòu)進(jìn)甲、乙兩種圖書(shū),每本甲種圖書(shū)的進(jìn)價(jià)比每本乙種圖書(shū)的進(jìn)價(jià)高20元,花780元購(gòu)進(jìn)甲種圖書(shū)的數(shù)量與花540元購(gòu)進(jìn)乙種圖書(shū)的數(shù)量相同.
(1)求甲、乙兩種圖書(shū)每本的進(jìn)價(jià)分別是多少元;
(2)宣和中學(xué)購(gòu)進(jìn)甲、乙兩種圖書(shū)共70本,總購(gòu)書(shū)費(fèi)用不超過(guò)3950元,則最多購(gòu)進(jìn)甲種圖書(shū)多少本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在中,,,點(diǎn)為上一動(dòng)點(diǎn),以為邊,在的右側(cè)作等邊.
(1)當(dāng)平分時(shí),如圖1,四邊形是________形;
(2)過(guò)作于,如圖2,求證:為的中點(diǎn);
(3)若.
①當(dāng)為的中點(diǎn)時(shí),過(guò)點(diǎn)作于,如圖3,求的長(zhǎng);
②點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn),則點(diǎn)所經(jīng)過(guò)路徑長(zhǎng)為________(直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,∠C=90°,O是斜邊AB上一點(diǎn),以O為圓心,OB為半徑的圓與AB交于點(diǎn)E,與BC交于點(diǎn)F,與AC相切于點(diǎn)D,連接DF、BD,且BD平分∠ODF.
(1)求證:四邊形是菱形;
(2)若,求陰影部分的面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD在平面直角坐標(biāo)系中的位置如圖所示,對(duì)角線(xiàn)AC與BD的交點(diǎn)E恰好在y軸上,過(guò)點(diǎn)D和BC的中點(diǎn)H的直線(xiàn)交AC于點(diǎn)F,線(xiàn)段DE,CD的長(zhǎng)是方程x2﹣9x+18=0的兩根,請(qǐng)解答下列問(wèn)題:
(1)求點(diǎn)D的坐標(biāo);
(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)點(diǎn)H,則k= ;
(3)點(diǎn)Q在直線(xiàn)BD上,在直線(xiàn)DH上是否存在點(diǎn)P,使以點(diǎn)F,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在Rt△ABC中,∠ACB=90°,AC=BC,D是線(xiàn)段AB上一點(diǎn),連結(jié)CD,將線(xiàn)段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段CE,連結(jié)DE,BE.
(1)依題意補(bǔ)全圖形;
(2)若∠ACD=α,用含α的代數(shù)式表示∠DEB;
(3)若△ACD的外心在三角形的內(nèi)部,請(qǐng)直接寫(xiě)出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)A,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)y(k>0,x>0)的圖象經(jīng)過(guò)AC的中點(diǎn)D,則k的值為( )
A.4B.5C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與函數(shù)定義新函數(shù)
(1)若則新函數(shù) ;
(2)若新函數(shù)的解析式為則 , ;
(3)設(shè)新函數(shù)頂點(diǎn)為.
①當(dāng)為何值時(shí),有最大值,并求出最大值;
②求與的函數(shù)解析式;
(4)請(qǐng)你探究:函數(shù)與新函數(shù)分別經(jīng)過(guò)定點(diǎn),函數(shù)的頂點(diǎn)為,新函數(shù)上存在一點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形為平行四邊形時(shí),直接寫(xiě)出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com