(5-&函數(shù)的綜合與創(chuàng)新·2013東營中考)若定義:,例如,=(     )

A.            B.           C.            D.

B.解析:由題意得f(2,3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點P從原點O出發(fā),沿x軸向右以毎秒1個單位長精英家教網(wǎng)的速度運動t秒(t>0),拋物線y=x2+bx+c經(jīng)過點O和點P,已知矩形ABCD的三個頂點為 A (1,0),B (1,-5),D (4,0).
(1)求c,b (用含t的代數(shù)式表示):
(2)當(dāng)4<t<5時,設(shè)拋物線分別與線段AB,CD交于點M,N.
①在點P的運動過程中,你認(rèn)為∠AMP的大小是否會變化?若變化,說明理由;若不變,求出∠AMP的值;
②求△MPN的面積S與t的函數(shù)關(guān)系式,并求t為何值時,S=
218
;
(3)在矩形ABCD的內(nèi)部(不含邊界),把橫、縱坐標(biāo)都是整數(shù)的點稱為“好點”.若拋物線將這些“好點”分成數(shù)量相等的兩部分,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,開口向上的拋物線y=ax2+bx+c與x軸交于點A(-6,0),另一個交點是B,與y軸的交點是C,且拋物線的頂點的縱坐標(biāo)是-2,△AOC的面積為6
3

(1)求點B、C的坐標(biāo);
(2)求拋物線的解析式;
(3)M點從點A出發(fā)向點C以每秒
3
2
個單位勻速運動.同時點P以每秒2個單位的速度從A點出發(fā),沿折線AB、BC向點C勻速運動,在運動的過程中,設(shè)△AMP的面積為y,運動的時間為x,求y與x的函數(shù)關(guān)系式及y的最大值;
(4)在運動的過程中,過點M作MN∥x軸交BC邊于N,試問,在x軸上是否存在點Q,使△MNQ為直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,一條直線l與x軸相交于點A(2,0),與正比例函數(shù)y=kx(k≠0,且k為常數(shù))的圖象相交于點P(1,1).
(1)求k的值;
(2)求△AOP的面積.
(3)在x軸找一點M,使三角形AMP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在?ABCD中,AC⊥BC,AC=BC=2,動點P從點A出發(fā)沿AC向終點C移動,過點P分別作PM∥AB,PN∥AD,連結(jié)AM,設(shè)AP=x,△AMP的面積為y.
(1)四邊形PMCN是不是菱形,請說明理由.
(2)寫出y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案