【題目】若關(guān)于x的一元二次方程kx2﹣2x+1=0有實數(shù)根,則k的取值范圍是 .
【答案】k≤1且k≠0
【解析】解:∵關(guān)于x的一元二次方程kx2﹣2x+1=0有實數(shù)根, ∴△=b2﹣4ac≥0,
即:4﹣4k≥0,
解得:k≤1,
∵關(guān)于x的一元二次方程kx2﹣2x+1=0中k≠0,
所以答案是:k≤1且k≠0.
【考點精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點E,且交⊙O于點D,F(xiàn)是BA延長線上一點,若∠CDB=∠BFD.
(1)求證:FD是⊙O的一條切線;
(2)若AB=10,AC=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子科技公司開發(fā)一種新產(chǎn)品,公司對經(jīng)營的盈虧情況每月最后一天結(jié)算1次.在1~12月份中,公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k,二次函數(shù)y=a(x﹣h)2+k的一部分圖象如圖所示,點A為拋物線的頂點,且點A、B、C的橫坐標(biāo)分別為4、10、12,點A、B的縱坐標(biāo)分別為﹣16、20.
(1)試確定函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k;
(2)分別求出前9個月公司累計獲得的利潤以及10月份一個月內(nèi)所獲得的利潤;
(3)在前12個月中,哪個月該公司一個月內(nèi)所獲得的利潤最多?最多利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E為邊長為1的正方形ABCD中CD邊上的一動點(不含點C、D),以BE為邊作圖中所示的正方形BEFG
(1)求∠ADF的度數(shù)
(2)如圖2,若BF交AD于點H,連接EH,求證:HB平分∠AHE
(3)如圖3,連接AE、CG,作BM⊥AE于點M,BM交GC于點N,連接DN.當(dāng)E在CD上運(yùn)動時,求證:NC=NG
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由相同邊長的小正方形組成的網(wǎng)格圖形,A、B、C都在格點上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)
(1)過點C畫AB的平行線;
(2)過點B畫AC的垂線,垂足為點G;過點B畫AB的垂線,交AC的延長線于H.
(3)點B到AC的距離是線段 的長度,線段AB的長度是點 到直線
的距離.
(4)線段BG、AB的大小關(guān)系為:BG AB(填“>”、“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店把某種“大運(yùn)”紀(jì)念品按成本價提高50%后標(biāo)價,又以8折(即按標(biāo)價的80%優(yōu)惠售出,結(jié)果每件仍獲利2.4元,則這種紀(jì)念品的成本是
A.3元B.4.8元C.6元D.12元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,D為OA半徑的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF,BF,求∠ABF的度數(shù);
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com