【題目】如圖,四邊形ABCD是菱形,對角線AC,BD相交于點O,DH⊥AB于點H,連接OH,求證:∠DHO=∠DCO.
【答案】證明見解析
【解析】試題分析:根據(jù)菱形的對角線互相平分可得OD=OB,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OH=OB,然后根據(jù)等邊對等角求出∠OHB=∠OBH,根據(jù)兩直線平行,內(nèi)錯角相等求出∠OB
H=∠ODC,然后根據(jù)等角的余角相等證明即可.
試題解析:∵四邊形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.
(1)求∠BED的度數(shù);
(2)判斷BE與AC的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點 B(m,n) 在第一象限,m,n 均為整數(shù),且滿足n =.
(1) 求點 B 的坐標;
(2) 將線段 OB 向下平移 a 個單位后得到線段 O′B′,過點 B′作 B′C⊥y 軸于點 C,若 3CO=2CO′,求a 的值;
(3) 過點 B 作與 y 軸平行的直線 BM,點 D 在 x 軸上,點 E 在 BM 上,點 D 從 O 點出發(fā)以每秒鐘 3個單位長度的速度沿 x 軸向右運動,同時點 E 從 B 點出發(fā)以每秒鐘 2 個單位長度的速度沿BM 向下運動,在點 D,E 運動的過程中,若直線 OE,BD 相交于點 G,且 5≤S△OGB≤10,則點G 的橫坐標 xG的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點C成中心對稱的△A1B1C1.
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
(3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(不寫解答過程,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列三行數(shù):
2 | 6 | 18 | 54 | 162…① |
-1 | 3 | 15 | 51 | 159…② |
-1 | -3 | -9 | -27 | -81…③ |
(1)第①行數(shù)按什么規(guī)律排列?
(2)第②③行數(shù)與第①行數(shù)有什么關(guān)系?
(3)每行取第6個數(shù)計算它們的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是一次函數(shù)(x≥0)圖象上一點,過點A作x軸的垂線l,B是l上一點(B在A上方),在AB的右側(cè)以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)(x>0)的圖象過點B,C,若△OAB的面積為6,則△ABC的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上,全班男同學(xué)進行了100米測驗,達標成績?yōu)?/span>15秒,如表是某小組8名男生的成績記錄,其中““表示成績大于15秒.
問:這個小組男生最優(yōu)秀的成績是多少秒?最差的成績是多少秒?
這個小組男生的達標率為多少?達標率
這個小組男生的平均成績是多少秒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在關(guān)于x,y的方程組 中,未知數(shù)滿足x≥0,y>0,那么m的取值范圍在數(shù)軸上應(yīng)表示為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com