【題目】在平面直角坐標系中,點 B(m,n) 在第一象限,m,n 均為整數(shù),且滿足n =.
(1) 求點 B 的坐標;
(2) 將線段 OB 向下平移 a 個單位后得到線段 O′B′,過點 B′作 B′C⊥y 軸于點 C,若 3CO=2CO′,求a 的值;
(3) 過點 B 作與 y 軸平行的直線 BM,點 D 在 x 軸上,點 E 在 BM 上,點 D 從 O 點出發(fā)以每秒鐘 3個單位長度的速度沿 x 軸向右運動,同時點 E 從 B 點出發(fā)以每秒鐘 2 個單位長度的速度沿BM 向下運動,在點 D,E 運動的過程中,若直線 OE,BD 相交于點 G,且 5≤S△OGB≤10,則點G 的橫坐標 xG的取值范圍是 .
【答案】(1)B的坐標(3,2) ;(2),; (3) 4≤xG≤.
【解析】(1)由點在第一象限可得 ,由n =可得 ,結(jié)合m,n 均為整數(shù),可求出m,n的值;
(2)根據(jù)平移的性質(zhì),分當點在點上方時和當點在點之間時兩種情況求解即可;
(3)設t秒后5≤S△OGB≤10,則D(3t,0),E(3,2-2t),則可求直線BD的解析式為,直線OE的解析式為,聯(lián)立后求出點G的坐標,然后根據(jù)三角形的面積公式列式計算即可.
(1)∵ 點在第一象限,
∴ ,
依題意可知, ,
∴ .
∵ 為整數(shù),
∴ 或或,
當,時,n的值都不合題意舍去;
當時, ,
∴ 點的坐標為;
(2) ① 如圖,當點在點上方時
, ∴,,
∴ ,
∵ ,
∴ ,
∴ ,
∴ ;
② 如圖,當點在點之間時
同理可求.
(3)4≤xG≤.
科目:初中數(shù)學 來源: 題型:
【題目】
(1)OA= cm,OB= cm.
(2)若點C是線段AO上一點,且滿足AC=CO+CB,求CO的長.
(3)若動點P、Q分別從A、B同時出發(fā),向右運動,點P的速度為2cm/s,點Q的速度為1cm/s,設運動時間為t(s),當點P與點Q重合時,P、Q兩點停止運動.
①當t為何值時,2OP﹣OQ=8.
②當點P經(jīng)過點O時,動點M從點O出發(fā),以3cm/s的速度也向右運動.當點M追上點Q后立即返回,以同樣的速度向點P運動,遇到點P后立即返回,又以同樣的速度向點Q運動,如此往返,直到點P、Q停止時,點M也停止運動.在此過程中,點M行駛的總路程為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,AD=BC=6,AB=CD=4.點P從點A出發(fā),以每秒1個單位的速度沿A→B→C→D→A的方向運動,回到點A停止運動.設運動時間為t秒.
(1)當t= 時,點P到達點C;當t= 時,點P回到點A;
(2)△ABP面積取最大值時t的取值范圍;(3)當△ABP的面積為3時,求t的值;
(4)若點P出發(fā)時,點Q從點A出發(fā),以每秒2個單位的速度沿A→D→C→B→A的方向運動,回到點A停止運動.請問:P 、Q何時在長方形ABCD的邊上相距1個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個長方形,若它的長增加 9cm,則變?yōu)閷挼膬杀;若它的寬增?/span> 5cm,則只比長少 1cm.
(1) 這個長方形的長和寬各是多少 cm?
(2) 將這個長方形的長減少 a cm,寬增加 b cm,使它變成一個正方形,若 a,b均為正整數(shù),所得正方形的周長不大于原長方形的周長,求這個正方形的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.
(1)填空:點A坐標為;拋物線的解析式為 .
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com