【題目】計算:
(1)( 2
(2)﹣ + +( 0﹣|﹣1+ |.

【答案】
(1)解:原式=4+3﹣10=﹣3
(2)解:原式=﹣ +2﹣2+1﹣ =0
【解析】(1)原式利用平方根、立方根定義計算即可得到結(jié)果;(2)原式利用平方根、立方根定義,零指數(shù)冪法則,以及絕對值的代數(shù)意義化簡,計算即可得到結(jié)果.
【考點精析】本題主要考查了零指數(shù)冪法則和實數(shù)的運算的相關(guān)知識點,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中,比﹣1小的數(shù)是(
A.﹣2
B.0
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H.

(1)求證:△BCE≌△ACD;
(2)求證:FH∥BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件適合采用抽樣調(diào)查的是( )

A. 對乘坐飛機的乘客進行安檢

B. 學(xué)校招聘教師,對應(yīng)聘人員進行面試

C. 天宮2零部件的檢查

D. 了解全市中小學(xué)生每天的午休時間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10厘米,BC=8厘米,點D為AB的中點,如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時點Q在線段CA上由C點向A點運動,當一個點停止運動時,另一個點也隨之停止運動,當點Q的運動速度為時,能夠在某一時刻使△BPD與△CQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營一批進價是30元/件的商品,在市場試銷中的日銷售量y件與銷售價x元之間滿足一次函數(shù)關(guān)系.

(1)請借助以下記錄確定yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

x

35

40

45

50

y

57

42

27

12

(2)若日銷售利潤為P元,根據(jù)上述關(guān)系寫出P關(guān)于x的函數(shù)關(guān)系式,并指出當銷售單價x為多少元時,才能獲得最大的銷售利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】角平分線上的點到角兩邊的距離相等.這一性質(zhì)在解決圖形面積問題時有何妙用呢?閱讀材料:已知,如圖(1),在面積為S的△ABC中,BC=a,AC=b,AB=c,三條角平分線的交點O到三邊的距離為r.連接OA、OB、OC,△ABC被劃分為三個小三角形.
∵S=SOBC+SOAC+SOAB= BCr+ ACr+ ABr= (a+b+c)r,∴r=

(1)類比推理:若面積為S的四邊形ABCD的四條角平分線交于O點,如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求點O到四邊的距離r;
(2)理解應(yīng)用:如圖(3),在四邊形ABCD中,AB∥DC,AB=21,CD=11,AD=BC=13,對角線BD=20,點O1與O2分別為△ABD與△BCD的三條角平分線的交點,設(shè)它們到各自三角形三邊的距離為r1和r2 , 求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程2xx+3=0的根的情況是(

A.有兩個不相等的實數(shù)根B.有兩個相等的實數(shù)根

C.只有一個實數(shù)根D.沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.

(1)求每噸水的政府補貼優(yōu)惠價和市場價分別是多少?

(2)設(shè)每月用水量為x噸,應(yīng)交水費為y元,請寫出y與x之間的函數(shù)關(guān)系式;

(3)小明家5月份用水26噸,則他家應(yīng)交水費多少元?

查看答案和解析>>

同步練習(xí)冊答案