如圖,在平面直角坐標系中,以點O為圓心,半徑為2的圓與y軸交于點A,點P(4,2)是⊙O外一點,連接AP,直線PB與⊙O相切于點B,交x軸于點C.
(1)證明PA是⊙O的切線;
(2)求點B的坐標.
(1)證明:∵圓O的半徑為2,P(4,2),
∴AP⊥OA,
則AP為圓O的切線;
(2)連接OP,OB,過B作BQ⊥OC,
∵PA、PB為圓O的切線,
∴∠APO=∠BPO,PA=PB=4,
∵APOC,
∴∠APO=∠POC,
∴∠BPO=∠POC,
∴OC=CP,
在Rt△OBC中,設OC=PC=x,則BC=PB-PC=4-x,OB=2,
根據(jù)勾股定理得:OC2=OB2+BC2,即x2=4+(4-x)2,
解得:x=2.5,
∴BC=4-x=1.5,
∵S△OBC=
1
2
OB•BC=
1
2
OC•BQ,即OB•BC=OC•BQ,
∴BQ=
2×1.5
2.5
=1.2,
在Rt△OBQ中,根據(jù)勾股定理得:OQ=
OB2-BQ2
=1.6,
則B坐標為(1.6,-1.2).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點P出發(fā),點A以5cm/s的速度沿射線PM方向運動,點B以4cm/s的速度沿射線PN方向運動.設運動時間為ts.
(1)求PQ的長;
(2)當t為何值時,直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,P是AB的延長線上的一點,PC切⊙O于點C,⊙O的半徑為3,∠PCB=30度.
(1)求∠CBA的度數(shù);(2)求PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點O為圓心,AD為弦作⊙O.
(1)在圖中作出⊙O;(不寫作法,保留作圖痕跡)
(2)求證:BC為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線AB,BC,CD分別與⊙O相切于E,F(xiàn),G,且ABCD,若OB=6cm,OC=8cm,則∠BOC=______度,⊙O的半徑是______cm,BE+CG=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,菱形ABCD的頂點A、B在x軸上,點A在點B的左側,點D在y軸的正半軸上,∠BAD=60°,點A的坐標為(-2,0).
(1)求線段AD所在直線的函數(shù)表達式;
(2)動點P從點A出發(fā),以每秒1個單位長度的速度,按照A?D?C?B?A的順序在菱形的邊上勻速運動一周,設運動時間為t秒、求t為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知PA,PB分別切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,則△PCD周長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點D.連接OE、AC,已知∠POE=2∠CAB,∠P=∠E.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=20D,PB=9,求⊙O的半徑及tan∠P的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,⊙O的半徑OC垂直弦AB于點H,連接BC,過點A作弦AEBC,過點C作CDBA交EA延長線于點D,延長CO交AE于點F.
(1)求證:CD為⊙O的切線;
(2)若BC=5,AB=8,求OF的長.

查看答案和解析>>

同步練習冊答案