如圖,已知PA,PB分別切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,則△PCD周長為______.
連接OB.
∵PA是⊙O的切線,點A是切點,
∴PA⊥OA;
∴PA=
PO2-OA2
=12;
∵PA、PB為圓的兩條相交切線,
∴PA=PB;
同理可得:CA=CE,DE=DB.
∵△PCD的周長=PC+CE+ED+PD,
∴△PCD的周長=PC+CA+BD+PD=PA+PB=2PA,
∴△PCD的周長=24;
故答案是:24.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連接DE.
(1)求證:DE是⊙O的切線;
(2)連接OE,若AB=4,AD=3,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC為等邊三角形,AB=6,動點O在△ABC的邊上從點A出發(fā)沿著A→C→B→A的路線勻速運動一周,速度為1個長度單位每秒,以O(shè)為圓心、
3
為半徑的圓在運動過程中與△ABC的邊第二次相切時是出發(fā)后第______秒.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以點O為圓心,半徑為2的圓與y軸交于點A,點P(4,2)是⊙O外一點,連接AP,直線PB與⊙O相切于點B,交x軸于點C.
(1)證明PA是⊙O的切線;
(2)求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C,∠DAB=∠B=30°.
(1)求證:直線BD與⊙O相切;
(2)若AC=10,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知在Rt△ABC中,∠C=Rt∠,a、b、c分別是∠A,∠B,∠C的對邊,且a:b=3:4,a+b=c+4.
(1)求a、b長;
(2)若D是AB上的定點,以BD為直徑的⊙O恰好切AC于點E,求⊙O的半徑r;
(3)若⊙O的圓心O是AB上的動點,求⊙O的半徑r在怎樣的取值范圍內(nèi),能使⊙O與AC相切,且與BC所在直線相交?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,在△ABC中,AB=AC=2,∠A=90°,O為BC的中點,動點E在BA邊上自由移動,動點F在AC邊上自由移動.
(1)點E,F(xiàn)的移動過程中,△OEF是否能成為∠EOF=45°的等腰三角形?若能,請指出△OEF為等腰三角形時動點E,F(xiàn)的位置;若不能,請說明理由;
(2)當∠EOF=45°時,設(shè)BE=x,CF=y,求y與x之間的函數(shù)解析式,寫出x的取值范圍;
(3)在滿足(2)中的條件時,若以O(shè)為圓心的圓與AB相切(如圖2),試探究直線EF與⊙O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠A=30°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案