【題目】觀察下列算式,你發(fā)現(xiàn)了什么規(guī)律?

12=;12+22=;12+22+32=;12+22+32+42=;…

①根據(jù)你發(fā)現(xiàn)的規(guī)律,計算下面算式的值;12+22+32+42+52=____________;

②請用一個含n的算式表示這個規(guī)律:12+22+32…+n2=___________;

③根據(jù)你發(fā)現(xiàn)的規(guī)律,計算下面算式的值:512+522+…+992+1002=____________

【答案】 295425

【解析】

(1) 根據(jù)所給的4個算式的規(guī)律, 12+22+32+42+52等于分母是6, 分子是5611的分?jǐn)?shù)的大小.

(2) 根據(jù)所給的4個算式的規(guī)律, 12+22+32…+n2等于分母是6, 分子是n (n+1) (2n+1) 的分?jǐn)?shù)的大小.

(3)用12+22+..+992+1002的值減去12+22+..+492+502的值, 求出算式512+522+..+992+1002的值是多少即可.

解:(1)12+22+32+42+52,

(2)12+22+32…+n2=,

(3) 512+522+..+992+1002=12+22+..+992+1002-(12+22+..+492+502

==338350-42925=295425,

故答案:295425.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x2+(2m﹣1)x+m2﹣1經(jīng)過坐標(biāo)原點,且當(dāng)x<0時,y隨x的增大而減。
(1)求拋物線的解析式;
(2)結(jié)合圖象寫出,0<x<4時,直接寫出y的取值范圍;
(3)設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.當(dāng)BC=1時,求出矩形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OD是∠AOB的平分線,OE是∠BOC的平分線.

(1)若∠BOC=50°,BOA=80°,求∠DOE的度數(shù);

(2)若∠AOC=150°,求∠DOE的度數(shù);

(3)你發(fā)現(xiàn)∠DOE與∠AOC有什么等量關(guān)系?給出結(jié)論并說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點E在AB上,F(xiàn)是線段BD的中點,連接CE、FE.

(1)若AD=3 ,BE=4,求EF的長;
(2)求證:CE= EF;
(3)將圖1中的△AED繞點A順時針旋轉(zhuǎn),使AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連接BD,取BD的中點F,問(2)中的結(jié)論是否仍然成立,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個袋子中裝有3個紅球和2個黃球,這些球的形狀、大。|(zhì)地完全相同,在看不到球的條件下,隨機從袋子里同時摸出2個球,其中2個球的顏色相同的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90,BD平分∠ABC,交ACD,OE、F分別在BD、BC

AC上,且四邊形OECF是正方形.

(1)求證:點O在∠BAC的平分線上;

(2)若AC=5,BC=12,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是矩形ABCDAD邊上一個動點,矩形的兩條邊AB、BC長分別是68,則點P到矩形的兩條對角線距離之和PE+PF是(

A. 4.8 B. 5 C. 6 D. 7.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.

(1)要使這兩個正方形的面積之和等于17cm2,那么這段鐵絲剪成兩段后的長度分別是多少?

(2)兩個正方形的面積之和可能等于12cm2? 若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB與直線CD相交于點O,BOE=90°,F(xiàn)O平分∠BOD,BOC:AOC=1:3.

(1)求∠DOE、COF的度數(shù).

(2)若射線OF、OE同時繞O點分別以2°/s、4°/s的速度,順時針勻速旋轉(zhuǎn),當(dāng)射線OE、OF的夾角為90°時,兩射線同時停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時間為t,試求t值.

查看答案和解析>>

同步練習(xí)冊答案