(2011•如東縣模擬)如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測(cè)得AB=5,AD=4.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問題,請(qǐng)你幫助解決.

(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過點(diǎn)A(如圖2),請(qǐng)你求出△ABF的面積;
(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線BC向右平移,至F點(diǎn)與B重合時(shí)停止.在平移過程中,設(shè)G點(diǎn)平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個(gè)過程中,y與x的函數(shù)關(guān)系式,并求當(dāng)重疊部分面積為10時(shí),平移距離x的值(如圖3);
(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過程中,雖然有時(shí)平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時(shí)候平移的距離不等,兩紙片重疊部分的面積也不可能相等.請(qǐng)?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫出結(jié)果).

【答案】分析:(1)由題意易得CE=3,DE=2,AD=4,然后經(jīng)過證明△EFG∽△AED,求得FB的值,代入S△ABF=S△BEF-S△ABE=BF•BE-AB•AD即可;
(2)分兩種情況:一是x平移距離小于4時(shí),二是x平移距離大于4時(shí),分別求得解析式,把y=10分別代入兩式,求得x的值,注意驗(yàn)證是否符合題意;
(3)當(dāng)4≤y<16時(shí),平移的距離不等,兩紙片重疊的面積可能相等;0≤y<4時(shí),平移的距離不等,兩紙片重疊部分的面積也不可能相等.
解答:解:(1)∵AB=EG=DC=5,AD=BC=4,
∴CE===3,DE=CD-CE=5-3=2,
∵AB=EG,
∴∠BAE=∠BEA,
又∵∠BAE+∠EAD=90°,∠AED+∠EAD=90°,
∴∠BAE=∠AED
在△EFG和△AED中,∠BAE=∠AED,∠FBE=∠ADE=90°,
∴△EFG∽△AED,
那么,,
∴FB(或FG)==10,
∴S△ABF=S△BEF-S△ABE=BF•BE-AB•AD=×10×5-×4×5=15;

(2)分兩種情況:一是x平移距離小于4時(shí),EF與AB相交于P,過P作PQ⊥EG于Q點(diǎn),
∵△EFG的直角邊FG=10,EG=5,
∴tanα===,
∵∠FGE=90°,
∴PQ∥FC,四邊形PQGB是矩形,
∴∠EPQ=∠F,
根據(jù)這個(gè)正切值,可求出相應(yīng)的線段的數(shù)值,
得出,F(xiàn)B=FG-BG=10-x,BP=,PQ=x,EQ=,
∴重疊部分y=PB•BG+BG•EQ=+=-x2+5x,
二是x平移距離大于4時(shí),EF與AB相交于P,與CD相交于R,
∴y=PB•BC+PQ•RQ=+×4×2=24-2x,
當(dāng)重疊部分面積為10時(shí),即y=10分別代入兩等式,
-x2+5x=10,
解得:x=10+2(不合題意舍去)或10-2
y=24-2x=10得出,x=7,
∴當(dāng)0≤x≤4時(shí),y=-x2+5x,
當(dāng)4<x≤10時(shí),y=-2x+24,
∴當(dāng)y=10時(shí),x=7或x=10-2;

(3)解:當(dāng)4≤y<16時(shí),平移的距離不等,兩紙片重疊的面積可能相等,
當(dāng)0≤y<4時(shí),平移的距離不等,兩紙片重疊部分的面積也不可能相等.
點(diǎn)評(píng):本題以動(dòng)態(tài)(平移和旋轉(zhuǎn))的形式考查了分類討論的思想、函數(shù)的知識(shí)和直角三角形,具有很強(qiáng)的綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年江蘇省淮安市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•如東縣模擬)如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測(cè)得AB=5,AD=4.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問題,請(qǐng)你幫助解決.

(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過點(diǎn)A(如圖2),請(qǐng)你求出△ABF的面積;
(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線BC向右平移,至F點(diǎn)與B重合時(shí)停止.在平移過程中,設(shè)G點(diǎn)平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個(gè)過程中,y與x的函數(shù)關(guān)系式,并求當(dāng)重疊部分面積為10時(shí),平移距離x的值(如圖3);
(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過程中,雖然有時(shí)平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時(shí)候平移的距離不等,兩紙片重疊部分的面積也不可能相等.請(qǐng)?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省深圳市龍崗區(qū)五校聯(lián)考中考數(shù)學(xué)三模試卷(解析版) 題型:填空題

(2011•如東縣模擬)二次函數(shù)y=ax2+bx+c的部分對(duì)應(yīng)值如下表:
x-3-2135
y7-8-9-57
則當(dāng)x=2時(shí)對(duì)應(yīng)的函數(shù)值y=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省淮安市中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2011•如東縣模擬)二次函數(shù)y=ax2+bx+c的部分對(duì)應(yīng)值如下表:
x-3-2135
y7-8-9-57
則當(dāng)x=2時(shí)對(duì)應(yīng)的函數(shù)值y=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省淮安市中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2011•如東縣模擬)下列運(yùn)算正確的是( )
A.=3-π
B.2=11-4
C.(-=0
D.3+=3

查看答案和解析>>

同步練習(xí)冊(cè)答案