【題目】如圖,為線段上一動點(不與點,重合),在同側(cè)分別作正三角形和等邊三角形交于點,交于點,交于點,以下結(jié)論一定正確的有( )個

;②;③;④;⑤

A.2B.3C.4D.5

【答案】C

【解析】

根據(jù)等邊三角形性質(zhì)得出ABBCACDCCEDE,∠BCA=∠DCE=∠EDC=∠DEC60,推出∠ACD=∠BCE,根據(jù)SAS證△ACD≌△BCE即可依次判斷.

∵等邊△ABC和等邊△DCE

BCAC,DEDCCE,∠DEC=∠BCA=∠DCE60,

,正確;

∴∠ACD=∠BCE,

在△ACD和△BCE

,

∴△ACD≌△BCESAS),①正確;

∴∠CBE=∠DAC,ADBE,④正確;

∵∠ABC60≠∠BAP,錯誤

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某地有一座圓弧形的拱橋,橋下水面寬為8米(即AB=8米),拱頂高出水面為2米(即CD=2米).

(1)求這座拱橋所在圓的半徑.

(2)現(xiàn)有一艘寬6米,船艙頂部為正方形并高出水面1.5米的貨船要經(jīng)過這里,此時貨船能順利通過這座拱橋嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點D的中點,直角繞點D旋轉(zhuǎn),,分別與邊交于E,F兩點,下列結(jié)論:①是等腰直角三角形;②;③;④,其中正確結(jié)論是( ).

A.①②④B.②③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:4ac﹣b2<0;2a﹣b=0;a+b+c<0;點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確結(jié)論的個數(shù)是(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x22m+1x+mm+1=0,

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)設(shè)方程的兩根分別為x1、x2,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計的ABCBC邊上的高線的尺規(guī)作圖過程.

已知:ABC

求作:ABCBC邊上的高線AD

作法:如圖,

①以點B為圓心,BA的長為半徑作弧,以點C為圓心,CA的長為半徑作弧,兩弧在BC下方交于點E

②連接AEBC于點D

所以線段ADABCBC邊上的高線.

根據(jù)小東設(shè)計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵ =BA, =CA,

∴點BC分別在線段AE的垂直平分線上( )(填推理的依據(jù)).

BC垂直平分線段AE

∴線段ADABCBC邊上的高線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以BC為直徑的⊙OAB于點D,DEAC于點E,且∠AADE

(1)求證:DE是⊙O的切線;

(2)若AD=16,DE=10,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時,與其對應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

同步練習(xí)冊答案