【題目】已知關于x的方程x2﹣(2m+1)x+m(m+1)=0,
(1)求證:方程總有兩個不相等的實數根;
(2)設方程的兩根分別為x1、x2,求的最小值.
【答案】(1)證明見解析;(2)的最小值為.
【解析】試題分析:(1)根據方程的系數結合根的判別式,即可得出△=1>0,由此即可證出方程總有兩個不相等的實數根;
(2)根據根與系數的關系可得x1+x2=2m+1、x1x2=m(m+1),利用配方法可將x12+x22變形為(x1+x2)2-2 x1x2,代入數據即可得出x12+x22=2(m+)2+,進而即可得出x12+x22的最小值.
試題解析:
(1)證明:∵△=[﹣(2m+1)]2﹣4m(m+1)=1>0,
∴方程總有兩個不相等的實數根;
(2)解:∵方程的兩根分別為x1、x2,
∴x1+x2=2m+1、x1x2=m(m+1),
∴x12+x22=(x1+x2)2-2 x1x2=(2m+1)2﹣2m(m+1)=2m2+2m+1=2,
∴x12+x22的最小值為.
科目:初中數學 來源: 題型:
【題目】如圖,點的坐標為(3,4),軸于點,是線段上一點,且,點從原點出發(fā),沿軸正方向運動,與直線交于,則的面積( )
A.逐漸變大B.先變大后變小C.逐漸變小D.始終不變
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,要設計一個等腰梯形的花壇,花壇上底米,下底米,上下底相距米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設甬道的寬為米.
用含的式子表示橫向甬道的面積;
當三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
根據設計的要求,甬道的寬不能超過米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關系,比例系數是,花壇其余部分的綠化費用為每平方米萬元,那么當甬道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=x2+bx+c的圖象經過點(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數圖象的頂點坐標和對稱軸;
(3)在所給坐標系中畫出二次函數y=x2+bx+c的圖象.
(4)寫出當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為線段上一動點(不與點,重合),在同側分別作正三角形和等邊三角形,與交于點,與交于點,與交于點,以下結論一定正確的有( )個
①;②;③;④;⑤
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工程隊承包了某標段全長1800米的過江隧道施工任務,甲、乙兩個班組分別從東、西兩端同時掘進.已知甲組比乙組平均每天多掘進2米,經過5天施工,兩組共掘進了60米.
(1)求甲、乙兩班組平均每天各掘進多少米?
(2)為加快工程進度,通過改進施工技術,在剩余的工程中,甲組平均每天能比原來多掘進2米,乙組平均每天能比原來多掘進1米.按此施工進度,能夠比原來少用多少天完成任務?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是的兩條高線,且它們相交于是邊的中點,連結,與相交于點,已知.
(1)求證BF=AC.
(2)若BE平分.
①求證:DF=DG.
②若AC=8,求BG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據它們的質量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:
(Ⅰ)圖①中的值為 ;
(Ⅱ)求統(tǒng)計的這組數據的平均數、眾數和中位數;
(Ⅲ) 根據樣本數據,估計這2500只雞中,質量為的約有多少只?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com