【題目】如圖,在平面直角坐標(biāo)系xoy中,E8,0),F(0 , 6)

1)當(dāng)G(4,8)時(shí),則∠FGE= °

2)在圖中的網(wǎng)格區(qū)域內(nèi)找一點(diǎn)P,使∠FPE=90°且四邊形OEPF被過(guò)P點(diǎn)的一條直線分割成兩部分后,可以拼成一個(gè)正方形.

要求:寫(xiě)出點(diǎn)P點(diǎn)坐標(biāo),畫(huà)出過(guò)P點(diǎn)的分割線并指出分割線(不必說(shuō)明理由,不寫(xiě)畫(huà)法).

【答案】190;(2)作圖見(jiàn)解析,P7,7),PH是分割線.

【解析】

試題(1)根據(jù)勾股定理求出△FEG的三邊長(zhǎng),根據(jù)勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °

2)一方面,由于∠FPE=90°,從而根據(jù)直徑所對(duì)圓周角直角的性質(zhì),點(diǎn)P在以EF為直徑的圓上;另一方面,由于四邊形OEPF被過(guò)P點(diǎn)的一條直線分割成兩部分后,可以拼成一個(gè)正方形,從而OP是正方形的對(duì)角線,即點(diǎn)P∠FOE的角平分線上,因此可得P7,7),PH是分割線.

試題解析:(1)連接FE,

∵E8,0),F(0 , 6),G(4,8),

根據(jù)勾股定理,得FG=,EG=FE=10

,即

∴△FEG是直角三角形,且∠FGE=90 °

2)作圖如下:

P77),PH是分割線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交A(﹣1,0)B(3,0)兩點(diǎn),直線l與拋物線交于A,C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求拋物線的解析式;
(2)求直線AC的函數(shù)表達(dá)式;
(3)若點(diǎn)M是線段AC上的點(diǎn)(不與A,C重合),過(guò)M作MF∥y軸交拋物線于F,交x軸于點(diǎn)H,設(shè)點(diǎn)M的橫坐標(biāo)為m,連接FA,F(xiàn)C,是否存在m,使△AFC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在,共享單車(chē)已遍布深圳街頭,其中較為常見(jiàn)的共享單車(chē)有“A.摩拜單車(chē)”、“B.小藍(lán)單車(chē)”、“C.OFO單車(chē)”、“D.小鳴單車(chē)”、“E.凡騎綠暢”等五種類(lèi)型.為了解市民使用這些共享單車(chē)的情況,某數(shù)學(xué)興趣小組隨機(jī)統(tǒng)計(jì)部分正在使用這些單車(chē)的市民,并將所得數(shù)據(jù)繪制出了如下兩幅不完整的統(tǒng)計(jì)圖表 (圖1、圖2):

根據(jù)所給信息解答下列問(wèn)題:
(1)此次統(tǒng)計(jì)的人數(shù)為人;根據(jù)已知信息補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在使用單車(chē)的類(lèi)型扇形統(tǒng)計(jì)圖中,使用E 型共享單車(chē)所在的扇形的圓心角為度;
(3)據(jù)報(bào)道,深圳每天有約200余萬(wàn)人次使用共享單車(chē),則其中使用E型共享單車(chē)的約有萬(wàn)人次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),DG⊥CE,點(diǎn)G為垂足.
(1)求證:DC=BE;
(2)若∠AEC=66°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是(  )

A. 當(dāng)AB=BC時(shí),四邊形ABCD是菱形

B. 當(dāng)ACBD時(shí),四邊形ABCD是菱形

C. 當(dāng)∠ABC=90°時(shí),四邊形ABCD是矩形

D. 當(dāng)AC=BD時(shí),四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線m⊥n.在平面直角坐標(biāo)系xOy中,x軸∥m,y軸∥n.如果以O(shè)1為原點(diǎn),點(diǎn)A 的坐標(biāo)為(1,1).將點(diǎn)O1平移2 個(gè)單位長(zhǎng)度到點(diǎn)O2 , 點(diǎn)A的位置不變,如果以O(shè)2為原點(diǎn),那么點(diǎn)A的坐標(biāo)可能是( )

A.(3,﹣1)
B.(1,﹣3)
C.(﹣2,﹣1)
D.(2 +1,2 +1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,PC切⊙O于點(diǎn)C,AB的延長(zhǎng)線與PC交于點(diǎn)P,PC的延長(zhǎng)線與AD交于點(diǎn)D,AC平分∠DAB.
(1)求證:AD⊥PC;
(2)連接BC,如果∠ABC=60°,BC=2,求線段PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P內(nèi)任意一點(diǎn),,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),周長(zhǎng)的最小值是5cm,則的度數(shù)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案