【題目】如圖.在等邊△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)O,且OD∥AB,OE∥AC.
(1)試判定△ODE的形狀,并說(shuō)明你的理由;
(2)線段BD、DE、EC三者有什么關(guān)系?寫出你的判斷過(guò)程.
【答案】(1)△ODE是等邊三角形;理由見(jiàn)解析;(2)BD=DE=EC,理由見(jiàn)解析;
【解析】
試題(1)根據(jù)平行線的性質(zhì)及等邊三角形的性質(zhì)可得到△ODE是等邊三角形;
(2)根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)可得到∠DBO=∠DOB,根據(jù)等角對(duì)等邊可得到DB=DO,同理可證明EC=EO,因?yàn)?/span>DE=OD=OE,所以BD=DE=EC.
試題解析:(1)△ODE是等邊三角形,
其理由是:∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°
∴△ODE是等邊三角形;
(2)答:BD=DE=EC,
其理由是:∵OB平分∠ABC,且∠ABC=60°,
∴∠ABO=∠OBD=30°,
∵OD∥AB,
∴∠BOD=∠ABO=30°,
∴∠DBO=∠DOB,
∴DB=DO,
同理,EC=EO,
∵DE=OD=OE,
∴BD=DE=EC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.點(diǎn)P從點(diǎn)A開始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),
(1)如果P、Q同時(shí)出發(fā),幾秒后,可使△PBQ的面積為8平方厘米?
(2)線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△ADE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在BA的延長(zhǎng)線上,DE與BC交于點(diǎn)F,連接BD.下列結(jié)論不一定正確的是( )
A. AD=BD B. AC∥BD C. DF=EF D. ∠CBD=∠E
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面內(nèi),,,.
(1)求證:;
(2)當(dāng)時(shí),取的中點(diǎn)分別為,連接,如圖2,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,與的平分線交于點(diǎn),過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn),那么下列結(jié)論:①;②;③和都是等腰三角形;④的周長(zhǎng)等于與的和,其中正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“珍重生命,注意安全!”同學(xué)們?cè)谏舷聦W(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時(shí),想起要買某本書,于是又折回到剛經(jīng)過(guò)的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)小明家到學(xué)校的路程是多少米?
(2)小明在書店停留了多少分鐘?
(3)本次上學(xué)途中,小明一共行駛了多少米?一共用了多少分鐘?
(4)我們認(rèn)為騎單車的速度超過(guò)300米/分鐘就超越了安全限度.問(wèn):在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,速度在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACD中,∠ACD=60°,以AC為邊作等腰三角形ABC,AB=AC,E、F分別為邊CD、BC上的點(diǎn),連結(jié)AE、AF、EF,∠BAC=∠EAF=60°
(1)求證:△ABF≌△ACE;
(2)若∠AED=70°,求∠EFC的度數(shù);
(3)請(qǐng)直接指出:當(dāng)F點(diǎn)在BC何處時(shí),AC⊥EF?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需再添加兩個(gè)條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE,∠C=∠E D. ∠ C=∠ E,∠ A=∠ D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com