【題目】如圖所示,在中,的平分線交于點,過點于點,交于點,那么下列結(jié)論:①;②;③都是等腰三角形;④的周長等于的和,其中正確的有(  )

A.4B.3C.2D.1

【答案】B

【解析】

通過平行線和角平分線得到相等的角,再根據(jù)平行線的性質(zhì)及等腰三角形的判定和性質(zhì)解答即可.

解:∵∠ABC、∠ACB的平分線相交于點P

∴∠MBP=PBC,∠PCN=PCB

又∵MNBC

∴∠PBC=MPB,∠NPC=PCB,

∴∠MBP=MPB,∠NPC=PCN,

BM=MP,PN=CN,

MN=MP+PN=BM+CN,故正確,

BMP和△CNP都是等腰三角形,故③正確,

∵△AMN的周長=AM+AN+MNMN=BM+CN,

∴△AMN的周長等于ABAC的和,故④正確,

不能說明,故①錯誤;

故答案為B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣2mx+(m﹣1)2=0有兩個實數(shù)根x1,x2

1)求m的取值范圍;

2)當(dāng)x12+x22=28時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)的圖象為直線,函數(shù)的圖象為直線,直線分別交軸于點和點,分別交軸于點,相交于點

(1)填空:  ;求直線的解析式為 ;

(2)若點軸上一點,連接,當(dāng)的面積是面積的2倍時,請求出符合條件的點的坐標(biāo);

(3)若函數(shù)的圖象是直線,且、、不能圍成三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:

(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達(dá)到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對他們進(jìn)行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根據(jù)表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的平均成績是 環(huán);

(2)分別計算甲、乙六次測試成績的方差;

(3)根據(jù)(1)、(2)計算的結(jié)果,你認(rèn)為推薦誰參加全國比賽更合適,請說明理由.

計算方差的公式:s2 [(x1)2+(x2)2++(xn)2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在等邊△ABC中,∠ABC與∠ACB的平分線相交于點O,且ODAB,OEAC.

(1)試判定△ODE的形狀,并說明你的理由;

(2)線段BD、DE、EC三者有什么關(guān)系?寫出你的判斷過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一幅長為80cm,寬為50cm的矩形風(fēng)景畫的四周鑲一條相同寬度的邊框,制成一幅掛圖,如圖所示,設(shè)邊框的寬為xcm,如果整個掛圖的面積是5400cm2 ,那么下列方程符合題意的是( )

A. (50-x)(80-x)=5400 B. (50-2x)(80-2x)=5400

C. (50+x)(80+x)=5400 D. (50+2x)(80+2x)=5400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點,分別以AC,BC為邊在AB的同側(cè)作等邊△HAC與等邊△DCB,連接DH.

(1)如圖1,當(dāng)∠DHC=90°時,求的值;

(2)在(1)的條件下,作點C關(guān)于直線DH的對稱點E,連接AE,BE.求證:CE平分∠AEB.

(3)現(xiàn)將圖1中的△DCB繞點C順時針旋轉(zhuǎn)一定角度α(0°<α<90°),如圖2,點C關(guān)于直線DH的對稱點為E,則(2)中的結(jié)論是否還成立,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是8m,寬是2m,拋物線的最高點到路面的距離為6米.

1)按如圖所示建立平面直角坐標(biāo)系,求表示該拋物線的函數(shù)表達(dá)式;

2)一輛貨運卡車高為4m,寬為2m,如果該隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

查看答案和解析>>

同步練習(xí)冊答案