【題目】一天晚上,小麗幫媽媽清洗茶杯,三個茶杯只有花色不同,其中一個無蓋(如圖),在清洗過程中,突然停電了,小麗只好摸黑清洗(在摸黑清洗中,能分清杯蓋與茶杯)

(1)小麗摸黑清洗過程中,在三個茶杯中他隨手拿起兩個,則這兩個都屬于有杯蓋的茶杯的概率是多少?

(2)小麗摸黑清洗完茶杯和杯蓋后,只好把杯蓋與茶杯隨機地搭配在一起,則花色搭配完全正確的概率是多少?

【答案】(1)P(兩個都屬于有杯蓋的茶杯)=(2)P(花色搭配完全正確)=

【解析】

(1)根據概率公式計算即可;
(2)用列表法得到所有可能,花色搭配完全正確的只有1種,利用概率公式計算即可;

(1)把兩套配套茶杯分別記作A a,B b,單獨的那個茶杯記為C,在三個茶杯中隨手拿起兩個的可能性有:AB,AC,BC三種,

P(兩個都屬于有杯蓋的茶杯)=

(2)出現(xiàn)的所有可能結果有:Aa,Bb,C; Aa,B,Cb; Ab,Ba,C; Ab,B,Ca; A,Ba,Cb; A,Bb,Ca6種,花色搭配完全正確的只有1種,

P(花色搭配完全正確)=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(04a),B(3a0),AOB的面積是150

1)求點A的坐標;

2)點P是射線AB上的一點,點P的橫坐標為t,連接PO,若PBO的面積為S,試用含有t的式子表示S

3)在(2)的條件下,若點P在第一象限內,且SPBO126,過PPEAB,交y軸于點D,交x軸于點E,且OBOD,連接AE,MAE上一點,連接OMPE于點N,若∠EMN+ABE180°,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°,在邊AB上取點D,在CA的延長線上取點E,使ACCE+ABBD=BC2

求證:(1)∠CEB>∠ABC;

(2)BE=2CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,點D、E分別在AB、AC上,AEBD,∠B=∠CEDAE3,DE,則線段CE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函數(shù)y=在第一象限的圖象經過點B,則OACBAD的面積之差SOACSBAD為( 。

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的半徑為1,等腰直角三角形ABC的頂點B的坐標為(,0),∠CAB=90°,AC=AB,頂點A在O上運動.

(1)當點A在x軸的正半軸上時,直接寫出點C的坐標;

(2)當點A運動到x軸的負半軸上時,試判斷直線BC與O位置關系,并說明理由;

(3)設點A的橫坐標為x,ABC的面積為S,求S與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,點E、F、G分別為邊AB、BC、CD的中點,若EFG的面積為4,則四邊形ABCD的面積為( 。

A. 8 B. 12 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交A、B兩點(A點在B點左側),直線與拋物線交于A、C兩點,其中C點的橫坐標為2.

(1)求A、B兩點的坐標及直線AC的函數(shù)表達式;

(2)P是線段AC上的一個動點,過P點作軸的平行線交拋物線于E點,求線段PE長度的最大值;

(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、CF、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).

(1)求k、m的值;

(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.

①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;

②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

同步練習冊答案