(2009•慶陽)如圖,在邊長為2的圓內(nèi)接正方形ABCD中,AC是對角線,P為邊CD的中點,延長AP交圓于點E.
(1)∠E=______度;
(2)寫出圖中現(xiàn)有的一對不全等的相似三角形,并說明理由;
(3)求弦DE的長.

【答案】分析:由“同弧所對的圓周角相等”可知∠E=∠ACD=45°,∠CAE=∠EDC,所以△ACP∽△DEP;求弦DE的長有兩種方法:
一,利用△ACP∽△DEP的相似比求DE的長;
二、過點D作DF⊥AE于點F,利用Rt△DFE中的勾股定理求得DE的長.
解答:解:(1)∵∠ACD=45°,∠ACD=∠E,
∴∠E=45°.(2分)

(2)△ACP∽△DEP,(4分)
理由:∵∠AED=∠ACD,∠APC=∠DPE,
∴△ACP∽△DEP.(6分)

(3)方法一:
∵△ACP∽△DEP,
.(7分)
∵P為CD邊中點,
∴DP=CP=1
∵AP=,AC=,(9分)
∴DE=.(10分)
方法二:
如圖2,過點D作DF⊥AE于點F,
在Rt△ADP中,AP=.(7分)
又∵S△ADP=AD•DP=AP•DF,(8分)
∴DF=.(9分)
∴DE=DF=.(10分)
點評:此題主要考查相似三角形的判定及圓周角定理的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•慶陽)如圖,在平面直角坐標(biāo)系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的坐標(biāo)為(-1,0),點B在拋物線y=ax2+ax-2上
(1)點A的坐標(biāo)為______,點B的坐標(biāo)為______;
(2)拋物線的關(guān)系式為______;
(3)設(shè)(2)中拋物線的頂點為D,求△DBC的面積;
(4)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達△AB′C″的位置.請判斷點B′、C″是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷23(靖江初中 鄭波)(解析版) 題型:填空題

(2009•慶陽)如圖,正方形OEFG和正方形ABCD是位似形,點F的坐標(biāo)為(1,1),點C的坐標(biāo)為(4,2),則這兩個正方形位似中心的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年甘肅省慶陽市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•慶陽)如圖,正方形OEFG和正方形ABCD是位似形,點F的坐標(biāo)為(1,1),點C的坐標(biāo)為(4,2),則這兩個正方形位似中心的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年甘肅省慶陽市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•慶陽)如圖,從地面垂直向上拋出一小球,小球的高度h(單位:米)與小球運動時間t(單位:秒)的函數(shù)關(guān)系式是h=9.8t-4.9t2,那么小球運動中的最大高度h最大=    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙江省臺州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•慶陽)如圖,從地面垂直向上拋出一小球,小球的高度h(單位:米)與小球運動時間t(單位:秒)的函數(shù)關(guān)系式是h=9.8t-4.9t2,那么小球運動中的最大高度h最大=    米.

查看答案和解析>>

同步練習(xí)冊答案