【題目】如圖,直線CBOAC=OAB=120°E、FCB上,且滿足FOB=AOB,OE平分COF.

1)求EOB的度數(shù).

2)若平行移動AB,那么OBCOFC的值是否隨之發(fā)生變化? 若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值.

3)在平行移動AB的過程中,是否存在某種情況,使OEC=OBA? 若存在,求出OBA的度數(shù);若不存在,說明理由.

【答案】(1)30°;(2)1:2;(3)45°.

【解析】

1)根據(jù)平行線的性質以及角平分線的性質即可得出答案,

2)根據(jù)平行線的性質可得出∠OBC=BOA,∠OFC=FOA,從而得出答案,

3)根據(jù)平行四邊形的性質即可得出答案.

解:(1)∵CBOA,∠C=OAB=120°,

∴∠COA=180°-C=180°-120°=60°

CBOA,

∴∠FBO=AOB,

又∵∠FOB=AOB,

∴∠FBO=FOB,

OB平分∠AOF,

又∵OE平分∠COF

,

2)不變,

CBOA,則∠OBC=BOA,∠OFC=FOA,

則∠OBC:∠OFC=AOB:∠FOA,

又∵∠FOA=FOB+AOB=2AOB,

∴∠OBC:∠OFC=AOB:∠FOA=AOB2AOB=12;

3)∵CBOA,∠C=OAB=120°,

∴∠AOC=ABC=60°,

則四邊形AOCB為平行四邊形,

則∠OEC=EOB+AOB,∠OBA=BOC=COE+EOB

又∵∠OEC=OBA,

則∠AOB=COE,

則∠COE=EOF=FOB=AOB=60°÷4=15°,

則∠EOB=2×15°=30°,

此時∠OBA=OEC=30°+15°=45°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5兩次共花費940兩次購進的AB兩種花草價格均分別相同

、B兩種花草每棵的價格分別是多少元?

若再次購買A、B兩種花草共12B兩種花草價格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請你給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知A(﹣1,5),B4,2),C(﹣1,0)三點.點A關于原點O的對稱點A′,點B關于軸的對稱點為B′,點C關于軸的對稱點為C′.

1A′的坐標為   ,B′的坐標為   ,C′的坐標為  .

2)建立平面直角坐標系,描出以下三點A、B′C′,并求AB′C′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形沿直線折疊,頂點恰好落在邊上點處,已知,則圖中陰影部分面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某開發(fā)區(qū)在一項工程招標時,接到甲、乙兩個工程隊的投標書,工程領導小組根據(jù)甲、乙兩隊的投標書測算,可有三種施工方案:①甲隊單獨完成這項工程,剛好如 期完成;②乙隊單獨完成此項工程要比規(guī)定工期多用5天;③ ,剩下的工程由乙隊單獨做,也正好如期完工.小亮設規(guī)定的工期為x天,根據(jù)題意列出了方 程: ,則方案③中被墨水污染的部分應該是( )
A.甲先做了4天
B.甲乙合作了4天
C.甲先做了工程的
D.甲乙合作了工程的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形的腰長為6cm,底邊長為4cm,以等腰三角形的頂角的頂點為圓心5cm為半徑畫圓,那么該圓與底邊的位置關系是(
A.相離
B.相切
C.相交
D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c中,自變量x與函數(shù)y之間的部分對應值如下表:

在該函數(shù)的圖象上有A(x1 , y1)和B(x2 , y2)兩點,且-1<x1<0,3<x2<4,y1與y2的大小關系正確的是( )
A.y1≥y2
B.y1>y2
C.y1≤y2
D.y1<y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】修建某一建筑時,若請甲、乙兩個工程隊同時施工,5天可以完成,需付兩隊費用共3 500元;若先請甲隊單獨做3天,再請乙隊單獨做6天可以完成,需付兩隊費用共3 300元.問:

(1)甲、乙兩隊每天的費用各為多少?

(2)若單獨請某隊完成工程,則單獨請哪隊施工費用較少?

查看答案和解析>>

同步練習冊答案