【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),直線經(jīng)過點(diǎn),與拋物線交于另一點(diǎn).已知.

(1)求拋物線與直線的解析式;

(2)如圖1,若點(diǎn)軸下方拋物線上一點(diǎn),過點(diǎn)于點(diǎn),過點(diǎn)軸交拋物線于點(diǎn),過點(diǎn)軸于點(diǎn),為直線上一點(diǎn),且.點(diǎn)為第四象限內(nèi)一點(diǎn),且在直線上方,連接、.記,.當(dāng)取得最大值時(shí),求出點(diǎn)的坐標(biāo),并求出此時(shí)的最小值.

(3)如圖2,將點(diǎn)沿直線方向平移13個(gè)長(zhǎng)度單位到點(diǎn),過點(diǎn)軸,交拋物線于點(diǎn).動(dòng)點(diǎn)軸上一點(diǎn),連接、,再將沿直線翻折為(點(diǎn)、、在同一平面內(nèi)),連接、,當(dāng)為等腰三角形時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).

【答案】(1)拋物線: 直線: (2) (3)

【解析】

(1)求出點(diǎn)A,B,C的坐標(biāo),根據(jù)待定系數(shù)法即可求出拋物線與直線的解析式;

(2)設(shè)點(diǎn),對(duì)稱軸為:,根據(jù)相似三角形的判定方法得到相似,根據(jù)相似三角形的性質(zhì)得到,根據(jù)二次函數(shù)的性質(zhì)即可求出取得最大值時(shí),求出點(diǎn)的坐標(biāo),并求出此時(shí)的最小值.

(3)分三種情況進(jìn)行討論即可.

(1)令

.

把點(diǎn)A、B分別代入中,得

解得:

把點(diǎn)A代入直線中,得

,

拋物線的解析式為:

直線的解析式為:

(2)設(shè)點(diǎn),對(duì)稱軸為:,由題意,當(dāng)點(diǎn)在對(duì)稱軸左側(cè)時(shí)的值一定小于點(diǎn)在對(duì)稱軸右側(cè)時(shí)的值,所以.

軸交直線與點(diǎn),相似。

所以

當(dāng)時(shí),.此時(shí),點(diǎn).

此時(shí)點(diǎn).

繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60度,得.

此時(shí)

當(dāng)點(diǎn)、、共線時(shí),取最小值.

,則,,

,

的最小值為

(3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A -1,0),B 5,0)兩點(diǎn),直線y軸交于點(diǎn),與軸交于點(diǎn)點(diǎn)x軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn),交直線于點(diǎn)設(shè)點(diǎn)的橫坐標(biāo)為

1)求拋物線的解析式;

2)若,求的值;

3)若點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是否存在點(diǎn),使點(diǎn)落在軸上?若存在,請(qǐng)直接寫出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AM為⊙O的切線,A為切點(diǎn).過⊙O上一點(diǎn)B作BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.

(1)求∠AOB的度數(shù);

(2)當(dāng)⊙O的半徑為4cm時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小段同學(xué)就本班同學(xué)“我最擅長(zhǎng)的體育項(xiàng)目”進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是她通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有 名學(xué)生;補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中,“其他”部分所對(duì)應(yīng)的圓心角度數(shù)為 度.

(2)學(xué)校將舉辦冬季運(yùn)動(dòng)會(huì),該班已推選5位同學(xué)參加乒乓球活動(dòng),其中有2位男同學(xué)(、)和3位女同學(xué)(、、),現(xiàn)從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,晚上,小亮在廣場(chǎng)上乘涼.圖中線段AB表示站在廣場(chǎng)上的小亮,線段PO表示直立在廣場(chǎng)上的燈桿,點(diǎn)P表示照明燈.

(1)請(qǐng)你在圖中畫出小亮在照明燈(P)照射下的影子;

(2)如果燈桿高PO=12m,小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m,請(qǐng)求出小亮影子的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.

(1)求證:ADE≌△ABF;

(2)填空:ABF可以由ADE繞旋轉(zhuǎn)中心    點(diǎn),按順時(shí)針方向旋轉(zhuǎn)    度得到;

(3)若BC=8,DE=6,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)你先認(rèn)真閱讀下列材料,再參照例子解答問題:

已知(x+y﹣3)(x+y+4)=﹣10,求x+y的值.

解:設(shè)t=x+y,則原方程變形為(t﹣3)(t+4)=﹣10,即t2+t﹣2=0

∴(t+2)(t﹣1)=0得t1=﹣2,t2=1∴x+y=﹣2或x+y=1

解答問題:(1)已知(x2+y2﹣4)(x2+y2+2)=7,求x2+y2的值.

(2)解方程:x4﹣6x2+8=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓桌面(桌面中間有一個(gè)直徑為1m的圓洞)正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為2m,桌面離地面1m,若燈泡離地面2m,則地面圓環(huán)形陰影的面積是(  )

A. m2 B. m2 C. m2 D. 12πm2

查看答案和解析>>

同步練習(xí)冊(cè)答案