【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1關(guān)于點B的中心對稱得C2,C2與x軸交于另一點C,將C2關(guān)于點C的中心對稱得C3,連接C1與C3的頂點,則圖中陰影部分的面積為_____.
【答案】32
【解析】試題分析:∵拋物線y=﹣x2﹣2x+3與x軸交于點A、B,
∴當(dāng)y=0時,則﹣x2﹣2x+3=0,
解得x=﹣3或x=1,
則A,B的坐標(biāo)分別為(﹣3,0),(1,0),
AB的長度為4,
從C1,C3兩個部分頂點分別向下作垂線交x軸于E、F兩點.
根據(jù)中心對稱的性質(zhì),x軸下方部分可以沿對稱軸平均分成兩部分補到C1與C2.
如圖所示,陰影部分轉(zhuǎn)化為矩形.
根據(jù)對稱性,可得BE=CF=4÷2=2,則EF=8
利用配方法可得y=﹣x2﹣2x﹣3=﹣(x+1)2+4
則頂點坐標(biāo)為(﹣1,4),即陰影部分的高為4,
S陰=8×4=32.
考點:拋物線與x軸的交點.
【題型】填空題
【結(jié)束】
17
【題目】解方程:(1)2(3x﹣1)=16;(2);(3) .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=(2m+1)x+m﹣3
(1)若函數(shù)圖象經(jīng)過原點,求m的值;
(2)若函數(shù)圖象與y軸的交點坐標(biāo)為(0,﹣2),求m的值;
(3)若y隨著x的增大而增大,求m的取值范圖;
(4)若函數(shù)圖象經(jīng)過第一、三,四象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,七、八年級根據(jù)初賽成績各選出5名選手組成代表隊參加決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
七年級 | a | 85 | b | S七年級2 |
八年級 | 85 | c | 100 | 160 |
(1)根據(jù)圖示填空:a= ,b= ,c= ;
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個代表隊的決賽成績較好?
(3)計算七年級代表隊決賽成績的方差S七年級2,并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC各頂點的坐標(biāo)分別是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).
(1)在圖中畫出△ABC關(guān)于原點對稱的△A1B1C1;
(2)在圖中畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求點A運動路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當(dāng)DE∥AM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.
【答案】(1)BF=AC,理由見解析;(2)NE=AC,理由見解析.
【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.
試題解析:
(1)BF=AC,理由是:
如圖1,∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵,
∴△ADC≌△BDF(AAS),
∴BF=AC;
(2)NE=AC,理由是:
如圖2,由折疊得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,
即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=AC.
【題型】解答題
【結(jié)束】
19
【題目】某校學(xué)生會決定從三明學(xué)生會干事中選拔一名干事當(dāng)學(xué)生會主席,對甲、乙、丙三名候選人進(jìn)行了筆試和面試,三人的測試成績?nèi)缦卤硭荆?/span>
測試項目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 75 | 80 | 90 |
面試 | 93 | 70 | 68 |
根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對三人進(jìn)行民主測評,三人得票率如扇形統(tǒng)計圖所示(沒有棄權(quán),每位同學(xué)只能推薦1人),每得1票記1分.
(1)分別計算三人民主評議的得分;
(2)根據(jù)實際需要,學(xué)校將筆試、面試、民主評議三項得分按3:3:4的比例確定個人成績,三人中誰會當(dāng)選學(xué)生會主席?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是兩種長方形鋁合金窗框,已知窗框的長都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個,(2)型的窗框2個.
(1)用含x、y的式子表示共需鋁合金的長度;
(2)若1m鋁合金的平均費用為100元,求當(dāng)x=1.2,y=1.5時,鋁合金的總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),平面直角坐標(biāo)系中,點A、B分別在x、y軸上,點B的坐標(biāo)為(0,1),∠BAO=30°.
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點,求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F,求證:F為DE的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E、F在BD上,且BF=DE.
(1)寫出圖中所有你認(rèn)為全等的三角形;
(2)延長AE交BC的延長線于G,延長CF交DA的延長線于H(請補全圖形),證明四邊形AGCH是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com