精英家教網 > 初中數學 > 題目詳情

如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=﹣1.

(1)求拋物線對應的函數關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

解:(1)根據題意,設拋物線的解析式為:
∵點A(1,0),B(0,3)在拋物線上,
,解得:。
∴拋物線的解析式為:
(2)①∵四邊形OMPQ為矩形,
∴OM=PQ,即,整理得:t2+5t﹣3=0,
解得<0,舍去)。
∴當秒時,四邊形OMPQ為矩形。
②Rt△AOB中,OA=1,OB=3,∴tanA=3。
若△AON為等腰三角形,有三種情況:
(I)若ON=AN,如答圖1所示,

過點N作ND⊥OA于點D,
則D為OA中點,OD=OA=
∴t=。
(II)若ON=OA,如答圖2所示,

過點N作ND⊥OA于點D,
設AD=x,則ND=AD•tanA=3x,OD=OA﹣AD=1﹣x,
在Rt△NOD中,由勾股定理得:OD2+ND2=ON2,
,解得x1=,x2=0(舍去)。
∴x=,OD=1﹣x=
∴t=。
(III)若OA=AN,如答圖3所示,

過點N作ND⊥OA于點D,
設AD=x,則ND=AD•tanA=3x,
在Rt△AND中,由勾股定理得:ND2+AD2=AN2
,解得x1=,x2=(舍去)。
∴x=,OD=1﹣x=1﹣。
∴t=1﹣。
綜上所述,當t為秒、秒,1﹣秒時,△AON為等腰三角形。

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,二次函數的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.

(1)求二次函數解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點,過點A的直線l與拋物線交于點C,其中A點的坐標是(1,0),C點坐標是(4,3).

(1)求拋物線的解析式;
(2)在(1)中拋物線的對稱軸上是否存在點D,使△BCD的周長最小?若存在,求出點D的坐標,若不存在,請說明理由;
(3)若點E是(1)中拋物線上的一個動點,且位于直線AC的下方,試求△ACE的最大面積及E點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,與y軸交于C點,拋物線經過A,B,C三點,頂點為F.

(1)求A,B,C三點的坐標;
(2)求拋物線的解析式及頂點F的坐標;
(3)已知M為拋物線上一動點(不與C點重合),試探究:
①使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標;
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與⊙E的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知△OAB的頂點A(﹣6,0),B(0,2),O是坐標原點,將△OAB繞點O按順時針旋轉90°,得到△ODC.

(1)寫出C,D兩點的坐標;
(2)求過A,D,C三點的拋物線的解析式,并求此拋物線頂點E的坐標;
(3)證明AB⊥BE.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標為A(﹣2,0).

(1)求拋物線的解析式及它的對稱軸方程;
(2)求點C的坐標,連接AC、BC并求線段BC所在直線的解析式;
(3)試判斷△AOC與△COB是否相似?并說明理由;
(4)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若不存在,求出符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:

銷售單價(元)
x
銷售量y(件)
    
銷售玩具獲得利潤w(元)
    
(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,四邊形ABCD是菱形,對角線AC與BD交于點O,且AC=80,BD=60.動點M、N分別以每秒1個單位的速度從點A、D同時出發(fā),分別沿A→O→D和D→A運動,當點N到達點A時,M、N同時停止運動.設運動時間為t秒.

(1)求菱形ABCD的周長;
(2)記△DMN的面積為S,求S關于t的解析式,并求S的最大值;
(3)當t=30秒時,在線段OD的垂直平分線上是否存在點P,使得∠DPO=∠DON?若存在,這樣的點P有幾個?并求出點P到線段OD的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

2011年11月28日至12月9日,聯合國氣候變化框架公約第17次締約方會議在南非德班召開,大會通過了“德班一攬子決議”(DurbanPackageOutcome),建立德班增強行動平臺特設工作組,決定實施《京都議定書》第二承諾期并啟動綠色氣候基金,中國的積極態(tài)度贏得與會各國的尊重.
在氣候對人類生存壓力日趨加大的今天,發(fā)展低碳經濟,全面實現低碳生活逐漸成為人們的共識.某企業(yè)采用技術革新,節(jié)能減排.從去年1至6月,該企業(yè)二氧化碳排放量y1(噸)與月份x(1≤x≤6,且x取整數)之間的函數關系如下表:

月份x(月)
 
1
 
2
 
3
 
4
 
5
 
6
 
二氧化碳排放量y1(噸)
 
600
 
300
 
200
 
150
 
120
 
100
 
去年7至12月,二氧化碳排放量y2(噸)與月份x(7≤x≤12,且x取整數)的變化情況滿足二次函數y2=ax2+bx(a≠0),且去年7月和去年8月該企業(yè)的二氧化碳排放量都為56噸.
(1)請觀察題中的表格,用所學過的一次函數、反比例函數或二次函數的有關知識,直接寫出y1與x之間的函數關系式.并且直接寫出y2與x之間的函數關系式;
(2)政府為了鼓勵企業(yè)節(jié)能減排,決定對每月二氧化碳排放量不超過600噸的企業(yè)進行獎勵.去年1至6月獎勵標準如下,以每月二氧化碳排放量600噸為標準,不足600噸的二氧化碳排放量每噸獎勵z(元)與月份x滿足函數關系式z=x2﹣x(1≤x≤6,且x取整數),如該企業(yè)去年3月二氧化碳排放量為200噸,那么該企業(yè)得到獎勵的噸數為(600﹣200)噸;去年7至12月獎勵標準如下:以每月二氧化碳排放量600噸為標準,不足600噸的二氧化碳排放量每噸獎勵30元,如該企業(yè)去年7月份的二氧化碳排放量為56噸,那么該企業(yè)得到獎勵的噸數為(600﹣56)噸.請你求出去年哪個月政府獎勵該企業(yè)的資金最多,并求出這個最多資金;
(3)在(2)問的基礎上,今年1至6月,政府繼續(xù)加大對節(jié)能減排企業(yè)的獎勵,獎勵標準如下:以每月二氧化碳排放量600噸為標準,不足600噸的部分每噸補助比去年12月每噸補助提高m%.在此影響下,該企業(yè)繼續(xù)節(jié)能減排,1至3月每月的二氧化碳排放量都在去年12月份的基礎上減少24噸.4至6月每月的二氧化碳排放量都在去年12月份的基礎上減少m%,若政府今年1至6月獎勵給該企業(yè)的資金為162000元,請你參考以下數據,估算出 m的整數值.
(參考數據:322=1024,332=1089,342=1156,352=1225,362=1296)

查看答案和解析>>

同步練習冊答案