(2006•遂寧)如圖,在梯形ABCD中,∠DCB=90°,AB∥CD,AB=25,BC=24,將該梯形折疊,點A恰好與點D重合,BE為折痕,那么AD的長度為   
【答案】分析:作DF⊥AB,垂足為F,則四邊形DCBF是矩形,CD=BF,DF=BC=24,由折疊的性質(zhì)知,BD=AB=25,利用勾股定理即可求出.
解答:解:過點D作DF⊥AB,垂足為F,
根據(jù)題意,BF=CD==7,
AF=AB-BF=25-7=18,
在Rt△ADF中,由勾股定理得,AD===30.
點評:本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質(zhì)和勾股定理求解
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年安徽省黃山市祁門二中中考數(shù)學一模試卷(解析版) 題型:解答題

(2006•遂寧)如圖,把正方形ACFG與Rt△ACB按如圖(甲)所示重疊在一起,其中AC=2,∠BAC=60°,若把Rt△ACB繞直角頂點C按順時針方向旋轉(zhuǎn),使斜邊AB恰好經(jīng)過正方形ACFG的頂點F,得△A′B′C′,A B分別與A′C,A′B′相交于D、E,如圖(乙)所示.
①△ACB至少旋轉(zhuǎn)多少度才能得到△A′B′C′?說明理由;
②求△ACB與△A′B′C′的重疊部分(即四邊形CDEF)的面積(若取近似值,則精確到0.1)?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年中考數(shù)學預考題(解析版) 題型:選擇題

(2006•遂寧)如圖,已知AB是⊙O的直徑,==.∠BOC=40°,那么∠AOE=( )

A.40°
B.60°
C.80°
D.120°

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省遂寧市中考數(shù)學試卷(解析版) 題型:解答題

(2006•遂寧)如圖,已知點M、N分別是平行四邊形ABCD的邊AB、DC的中點,求證:∠DAN=∠BCM.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省遂寧市中考數(shù)學試卷(解析版) 題型:填空題

(2006•遂寧)如圖,已知線段DE是由線段AB平移而得,AB=DC=4cm,EC=5cm,則△DCE的周長是    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省遂寧市中考數(shù)學試卷(解析版) 題型:選擇題

(2006•遂寧)如圖,已知AB是⊙O的直徑,==.∠BOC=40°,那么∠AOE=( )

A.40°
B.60°
C.80°
D.120°

查看答案和解析>>

同步練習冊答案