【題目】如圖,AB是⊙O的直徑,C、D兩點(diǎn)在⊙O上,若∠C=45°,
(1)求∠ABD的度數(shù).
(2)若∠CDB=30°,BC=3,求⊙O的半徑.
【答案】
(1)解:∵∠C=45°,
∴∠A=∠C=45°,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠ABD=45°
(2)解:連接AC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵∠CAB=∠CDB=30°,BC=3,
∴AB=6,
∴⊙O的半徑為3.
【解析】(1)求出∠A的度數(shù),繼而在Rt△ABD中,可求出∠ABD的度數(shù);(2)連接AC,則可得∠CAB=∠CDB=30°,在Rt△ACB中求出AB,繼而可得⊙O的半徑.
【考點(diǎn)精析】通過靈活運(yùn)用等腰直角三角形和圓周角定理,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個長8 厘米,寬6厘米的長方形中,剪下一個最大的圓,這個圓的面積是( )平方厘米.
A.18.84B.28.26C.25.12D.50.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有A、B、C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )
A. 在AC、BC兩邊高線的交點(diǎn)處
B. 在AC、BC兩邊中線的交點(diǎn)處
C. 在AC、BC兩邊垂直平分線的交點(diǎn)處
D. 在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為3,△ABC內(nèi)接于⊙O,AB=3 ,AC=3 ,D是⊙O上一點(diǎn),且AD=3,則CD的長應(yīng)是( )
A.3
B.6
C.
D.3或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(4,3),動圓D經(jīng)過A,O,分別與兩坐標(biāo)軸的正半軸交于點(diǎn)E,F(xiàn).當(dāng)EF⊥OA時,此時EF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)試開放期間,團(tuán)隊收費(fèi)方案如下:不超過30人時,人均收費(fèi)120元;超過30人且不超過m(30<m≤100)人時,每增加1人,人均收費(fèi)降低1元;超過m人時,人均收費(fèi)都按照m人時的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊,收取總費(fèi)用為y元.
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊人數(shù)超過一定數(shù)量時,會出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊中人數(shù)的增加而增加,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種電視機(jī)原價每臺2600元,國慶期間以九五折出售,并且商家規(guī)定滿2000元返200元.若購買這種電視機(jī)實(shí)際需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,,,求證:.
證明:∵,
∴________________(同旁內(nèi)角互補(bǔ),兩直線平行),
∴=________(兩直線平行,內(nèi)錯角相等),
又∵(已知),
∴________________(內(nèi)錯角相等,兩直線平行),
∴=________(兩直線平行,內(nèi)錯角相等),
∴-=________________,
即.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點(diǎn)A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點(diǎn)A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點(diǎn)Bn到ON的距離是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com