【題目】在矩形ABCD中,AD=3,CD=4,點E在邊CD上,且DE=1.
(1)感知:如圖①,連接AE,過點E作EF⊥AE,交BC于點F,連接AF,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE∽△ECF;
(3)應用:如圖③,若EF交AB邊于點F,其他條件不變,且△PEF的面積是3,則AP的長為________.
【答案】(1)證明見解析(2)證明見解析(3)2
【解析】
感知:先利用矩形性質得: ∠D=∠C=90°,再利用同角的余角相等得: ∠DAE=∠FEC,根據已知邊的長度計算出AD=CE=3,則由ASA證得: △ADE≌△ECF;
探究:利用兩角相等證明△PDE∽△ECF;
應用:作輔助線,構建如圖②一樣的相似三角形,利用探究得: △PDE∽△EGF,則,所以,再利用△PEF的面積是3,列式可得:PE·EF=6,兩式結合可求得PE的長,利用勾股定理求PD,從而得出AP的長.
(1)證明:感知:如圖①,∵四邊形ABCD為矩形,
∴∠D=∠C=90°,
∴∠DAE+∠DEA=90°,
∵EF⊥AE,
∴∠AEF=90°,
∴∠DEA+∠FEC=90°,
∴∠DAE=∠FEC,
∵DE=1,CD=4,
∴CE=3,
∵AD=3,
∴AD=CE,
∴△ADE≌△ECF(ASA)
(2)探究:如圖②,∵四邊形ABCD為矩形,
∴∠D=∠C=90°,
∴∠DPE+∠DEP=90°,
∵EF⊥PE,
∴∠PEF=90°,
∴∠DEP+∠FEC=90°,
∴∠DPE=∠FEC,
∴△PDE∽△ECF
(3)應用:解:如圖③,過F作FG⊥DC于G,
∵四邊形ABCD為矩形,
∴AB∥CD,
∴FG=BC=3,
∵PE⊥EF,
∴S△PEF=PEEF=3,
∴PEEF=6,
同理得:△PDE∽△EGF,
∴=,
∴=,
∴EF=3PE,
∴3PE2=6,
∴PE=±,
∵PE>0,
∴PE=,
在Rt△PDE中,由勾股定理得:PD==1,
∴AP=AD﹣PD=3﹣1=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD中,E、F分別是正方形AD、CD邊上的點,且∠EBF=45°,對角線AC交BE,BF于M,N,對于以下結論,正確的是( )①AE+CF=FE②△ABE≌△BCF③AM2+CN2=MN2④△EFD的周長等于2AB
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件,每件盈利40元.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經調查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件.求:
(1)若商場每件襯衫降價4元,則商場每天可盈利多少元?
(2)若商場平均每天要盈利1200元,每件襯衫應降價多少元?
(3)要使商場平均每天盈利1600元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,C是AB上一點,點D,E分別在AB兩側,AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC在直角坐標系內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2)(正方形網格中每個小正方形的邊長均為一個單位長度).
①畫出△ABC向下平移4個單位長度得到的△A1B1C1 , 點C1的坐標是________;
②以點B為位似中心,在網格內畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是________;
③若M(a,b)為線段AC上任一點,寫出點M的對應點M2的坐標________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市從 2018 年 1 月 1 日開始,禁止燃油助力車上路,于是電動自 行車的市場需求量日漸增多.某商店計劃最多投入 8 萬元購進 A、B 兩種型號的 電動自行車共 30 輛,其中每輛 B 型電動自行車比每輛 A 型電動自行車多 500 元.用 5 萬元購進的 A 型電動自行車與用 6 萬元購進的 B 型電動自行車數(shù)量一 樣.
(1)求 A、B 兩種型號電動自行車的進貨單價;
(2)若 A 型電動自行車每輛售價為 2800 元,B 型電動自行車每輛售價為 3500 元,設該商店計劃購進 A 型電動自行車 m 輛,兩種型號的電動自行車全部銷售 后可獲利潤 y 元.寫出 y 與 m 之間的函數(shù)關系式;
(3)該商店如何進貨才能獲得最大利潤?此時最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)交于A,B兩點,且點A的橫坐標是-2,點B的橫坐標是3,則以下結論:
①拋物線y=ax2(a≠0)的圖象的頂點一定是原點;
②x>0時,直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)的函數(shù)值都隨著x的增大而增大;
③AB的長度可以等于5;
④△OAB有可能成為等邊三角形;
⑤當-3<x<2時,ax2+kx<b,
其中正確的結論是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作探究:
數(shù)學研究課上,老師帶領大家探究《折紙中的數(shù)學問題》時,出示如圖1所示的長方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫一條截線段MN,將紙片沿MN折疊,MB與DN交于點K,得到△MNK.如圖2所示:
探究:
(1)若∠1=70°,∠MKN= °;
(2)改變折痕MN位置,△MNK始終是 三角形,請說明理由;
應用:
(3)愛動腦筋的小明在研究△MNK的面積時,發(fā)現(xiàn)KN邊上的高始終是個不變的值.根據這一發(fā)現(xiàn),他很快研究出△KMN的面積最小值為,此時∠1的大小可以為 °
(4)小明繼續(xù)動手操作,發(fā)現(xiàn)了△MNK面積的最大值.請你求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2,
求證:∠CED+∠ACB=180°,
請你將小明的證明過程補充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知)
∴∠FGB=∠CDB=90°( ).
∴GF∥CD( )
∵GF∥CD(已證)
∴∠2=∠BCD( )
又∵∠1=∠2(已知)
∴∠1=∠BCD( )
∴ ( )
∴∠CED+∠ACB=180°( )
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com