【題目】我市從 2018 1 1 日開始,禁止燃油助力車上路,于是電動自 行車的市場需求量日漸增多某商店計劃最多投入 8 萬元購進 A、B 兩種型號的 電動自行車共 30 輛,其中每輛 B 型電動自行車比每輛 A 型電動自行車多 500 元.用 5 萬元購進的 A 型電動自行車與用 6 萬元購進的 B 型電動自行車數(shù)量一 樣.

(1)求 A、B 兩種型號電動自行車的進貨單價;

(2)若 A 型電動自行車每輛售價為 2800 ,B 型電動自行車每輛售價為 3500 元,設(shè)該商店計劃購進 A 型電動自行車 m 輛,兩種型號的電動自行車全部銷售 后可獲利潤 y 元.寫出 y m 之間的函數(shù)關(guān)系式;

(3)該商店如何進貨才能獲得最大利潤?此時最大利潤是多少元?

【答案】(1)A、B 兩種型號電動自行車的進貨單價分別為 2500 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 時,y 有最大值,最大值為 11000 元.

【解析】

1)設(shè) A、B 兩種型號電動自行車的進貨單價分別為 x 、(x+500)元,根據(jù)用 5 萬元購進的 A 型電動自行車與用 6 萬元購進的 B 型電動自行車數(shù)量一 樣,列分式方程即可解決問題;

(2)根據(jù)總利潤=A 型的利潤+B 型的利潤,列出函數(shù)關(guān)系式即可;

(3)利用一次函數(shù)的性質(zhì)即可解決問題;

1)設(shè) A、B 兩種型號電動自行車的進貨單價分別為 x 、(x+500) ,

由題意:=,

解得:x=2500,

經(jīng)檢驗:x=2500 是分式方程的解

答:A、B 兩種型號電動自行車的進貨單價分別為 2500 3000

(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);

(3)y=300m+500(30﹣m)=﹣200m+15000,

﹣200<0,20≤m≤30,

m=20 時,y 有最大值,最大值為 11000 元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司對一種新型產(chǎn)品的產(chǎn)銷情況進行了營銷調(diào)查,發(fā)現(xiàn)年產(chǎn)量為x(噸)時,所需的成本y(萬元)與(x2+60x+800)成正比例,投入市場后當年能全部售出且發(fā)現(xiàn)每噸的售價p(單位:萬元)由基礎(chǔ)價與浮動價兩部分組成,其中基礎(chǔ)價是固定不變的,浮動價與x成正比例,比例系數(shù)為-.在營銷中發(fā)現(xiàn)年產(chǎn)量為20噸時,所需的成本是240萬元,并且年銷售利潤W(萬元)的最大值為55萬元.(注:年利潤=年銷售額-成本)

(1)求y(萬元)與x(噸)之間滿足的函數(shù)解析式;

(2)求年銷售利潤W與年產(chǎn)量x(噸)之間滿足的函數(shù)解析式;

(3)當年銷售利潤最大時,每噸的售價是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)x2﹣4x﹣3=0

(2)(x﹣3)2+2x(x﹣3)=0

(3)(x﹣1)2=4

(4)3x2+5(2x+3)=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊ABC中,點H在邊BC上,點K在邊AC上,且滿足AK=HC,連接AH、BK交于點F,

(1)如圖1,求∠AFB的度數(shù);

(2)如圖2,連接FC,若∠BFC=90°,點G為邊 AC上一點,且滿足∠GFC=30°,求證:AGBG;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AD=3,CD=4,點E在邊CD上,且DE=1.

(1)感知:如圖①,連接AE,過點EEF⊥AE,交BC于點F,連接AF,易證:△ADE≌△ECF(不需要證明);

(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點EEF⊥PE,交BC于點F,連接PF.求證:△PDE∽△ECF;

(3)應(yīng)用:如圖③,若EFAB邊于點F,其他條件不變,且△PEF的面積是3,則AP的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯誤的是(  )

A. 圖象的對稱軸是直線x=﹣1 B. x>﹣1時,yx的增大而減小

C. 當﹣3<x<1時,y<0 D. 一元二次方程ax2+bx+c=0的兩個根是﹣3,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示.在ABC中,∠ACB=90°,AC=BC,過點C任作一直線PQ,過點A于點M,過點BBNPQ于點N

1)如圖①,當M、NABC的外部時,MN、AM、BN有什么關(guān)系呢?為什么?

(2)如圖②,當M、NABC的內(nèi)部時,(1)中的結(jié)論是否仍然成立?若成立,請說明理由;若不成立,請指出MNAMBN之間的數(shù)關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列一段文字:在直角坐標系中,已知兩點的坐標是Mx1,y1),Nx2,y2)),M,N兩點之間的距離可以用公式MN計算.解答下列問題:

1)若點P24),Q(﹣3,﹣8),求P,Q兩點間的距離;

2)若點A1,2),B4,﹣2),點O是坐標原點,判斷△AOB是什么三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC,ABC=60°,CD平分∠ACBAB于點D,E在線段CD(E不與點C. D重合),且∠EAC=2EBC.

(1)如圖1,若∠EBC=27°,EB=EC,則∠DEB=___°,AEC=___°.

(2)如圖2,①求證:AE+AC=BC;

②若∠ECB=30°,且AC=BE,求∠EBC的度數(shù)。

查看答案和解析>>

同步練習冊答案