已知∠A是△ABC的一個(gè)內(nèi)角,拋物線數(shù)學(xué)公式的頂點(diǎn)在x軸上.
(1)求∠A的度數(shù);
(2)若S△ABC=數(shù)學(xué)公式,sinB=數(shù)學(xué)公式,求AB邊的長(zhǎng).

解:(1)∵拋物線的頂點(diǎn)在x軸上,
=0,
解得,cos=;
又∵∠A是△ABC的一個(gè)內(nèi)角,
∴0<∠A∠180°,∴0<<90°,
=45°,即∠A=90°;

(2)∵sinB=,
=,
∴BC=3AC;
又∵S△ABC=,
AB•AC=4
∴AC=;
∵AB2+AC2=BC2(勾股定理),
∴AB=4
分析:(1)利用二次函數(shù)的定點(diǎn)坐標(biāo)公式(-,)、已知條件“拋物線的頂點(diǎn)在x軸上”可以推知=0;然后根據(jù)∠A的取值范圍可以求得∠A的度數(shù);
(2)由直角三角形中三角函數(shù)的定義求得BC=3AC;然后由三角形的面積公式求得AC=;最后利用勾股定理可以求得AB的長(zhǎng)度.
點(diǎn)評(píng):本題考查了拋物線與x軸的交點(diǎn).x軸上的點(diǎn)的縱坐標(biāo)均為零.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知α,β是△ABC的兩個(gè)角,且sinα,tanβ是方程2x2-3x+1=0的兩根,則△ABC是( 。
A、銳角三角形B、直角三角形或鈍角三角形C、鈍角三角形D、等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,已知AD是△ABC的角平分線,CE⊥AD,垂足O,CE交AB于E,則下列命題:①AE=AC,②CO=OE,③∠AEO=∠ACO,④∠B=∠ECB.其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC的外心,∠ABC=60°,AC=4,則△ABC外接圓的半徑是(  )
A、
2
3
3
B、2
3
C、
4
3
3
D、
5
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線的一點(diǎn),AE⊥CD交DC的延長(zhǎng)線于E,C精英家教網(wǎng)F⊥AB于F,且CE=CF.
(1)求證:DE是⊙O的切線;
(2)若AB=6,BD=3,求AE和BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知BE是△ABC的高,AE=BE,
若要運(yùn)用“HL”說(shuō)明△AEF≌△BEC,還需添加條件:
AF=BC
AF=BC
;
若要運(yùn)用“SAS”說(shuō)明△AEF≌△BEC,還需添加條件:
EF=EC
EF=EC

查看答案和解析>>

同步練習(xí)冊(cè)答案