【題目】如圖,正方形的邊長為,點是邊的中點,點是邊上一動點(不含端點),于,與直線交于.
求證:.
若試寫出與之間的函數(shù)關系式.
求的最小值.
【答案】(1)詳見解析;(2)當時,與之間的函數(shù)關系式為;當時,與之間的函數(shù)關系式為;(3)
【解析】
(1)根據(jù)題意作于,運用正方形和矩形的性質(zhì)以及全等三角形的判定進行分析求證即可;
(2)由可知,進而得出與之間的函數(shù)關系式,并作于同理進行分析即可求解;
(3)根據(jù)題意取的中點,連接則,進而結(jié)合勾股定理進行分析求值即可.
解:證明:如圖1,作于.
是正方形,
是矩形
解:如圖1,由
當時,與之間的函數(shù)關系式為
如圖2,作于
同理,是矩形,
當時,與之間的函數(shù)關系式為
解:如圖1,取的中點,連接
則.
,
.
的最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】2020年3月24日,工信部發(fā)布《關于推動加快發(fā)展的通知》,全力推進網(wǎng)絡建設、應用推廣、技術發(fā)展和安全保障.工信部提出,要培育新型消費模式,加快用戶向遷移,推動“醫(yī)療健康”創(chuàng)新發(fā)展,實施“工業(yè)互聯(lián)網(wǎng)”512工程,促進“車聯(lián)網(wǎng)”協(xié)同發(fā)展,構(gòu)建應用生態(tài)系統(tǒng).現(xiàn)“網(wǎng)絡”已成為一個熱門詞匯,某校為了解九年級學生對“網(wǎng)絡”的了解程度,對九年級學生行了一次測試(一共10道題答對1道得1分,滿分10分),測試結(jié)束后隨機抽取了部分學生的成績整理分析,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)請補全條形統(tǒng)計圖,扇形統(tǒng)計圖中 __;
(2)所調(diào)查學生成績的眾數(shù)是_ ____分,平均數(shù)是_ 分;
(3)若該校九年級學生有人,請估計得分不少于分的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當點C與點M重合時AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,點是邊的中點,點是邊上的一個動點,過點作射線的垂線,垂足為點,連接.設,.小石根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.下面是小石的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如表:
(說明:補全表格時相關數(shù)據(jù)保留一位小數(shù))
(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:點是邊的中點時,的長度約為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李經(jīng)營一家水果店,某日到水果批發(fā)市場批發(fā)一種水果.經(jīng)了解,一次性批發(fā)這種水果不得少于,超過時,所有這種水果的批發(fā)單價均為3元.圖中折線表示批發(fā)單價(元)與質(zhì)量的函數(shù)關系.
(1)求圖中線段所在直線的函數(shù)表達式;
(2)小李用800元一次可以批發(fā)這種水果的質(zhì)量是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交軸正半軸于點, 頂點到軸的距離是,軸交拋物線于點,連結(jié)
(1)求拋物線的解析式
(2)若是等腰直角三角形,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一種折疊門,由上下軌道和兩扇長寬相等的活頁門組成,整個活頁門的右軸固定在門框
上,通過推動左側(cè)活頁門開關;圖2是其俯視圖簡化示意圖,已知軌道 ,兩扇活頁門的寬 ,點固定,當點在上左右運動時,與的長度不變(所有結(jié)果保留小數(shù)點后一位).
(1)若,求的長;
(2)當點從點向右運動60時,求點在此過程中運動的路徑長.
(參考數(shù)據(jù):sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.14)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明早上勻速騎車去上學,出發(fā)幾分鐘后,爸爸發(fā)現(xiàn)小明的作業(yè)本丟在家里,趕緊勻速騎車去追.爸爸剛出發(fā)時,小明也發(fā)現(xiàn)作業(yè)本丟在家里,立刻按原路原速返回, 后遇到爸爸,爸爸把作業(yè)本交給小明后立刻按原路原速返回家,小明繼續(xù)按原速騎車趕往學校.小明和爸爸相距的路程與小明出發(fā)的時間之間的關系如圖所示(爸爸給小明作業(yè)本的時間忽略不計).下列說法中,錯誤的是( )
A.小明的騎車速度為B.爸爸騎車的速度是小明的倍
C.點坐標為D.爸爸返回家時,小明共騎行了
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+bx+c與y軸交于點A(0,6),與x軸交于點B(﹣2,0),C(6,0).
(1)直接寫出拋物線的解析式及其對稱軸;
(2)如圖2,連接AB,AC,設點P(m,n)是拋物線上位于第一象限內(nèi)的一動點,且在對稱軸右側(cè),過點P作PD⊥AC于點E,交x軸于點D,過點P作PG∥AB交AC于點F,交x軸于點G.設線段DG的長為d,求d與m的函數(shù)關系式,并注明m的取值范圍;
(3)在(2)的條件下,若△PDG的面積為,
①求點P的坐標;
②設M為直線AP上一動點,連接OM交直線AC于點S,則點M在運動過程中,在拋物線上是否存在點R,使得△ARS為等腰直角三角形?若存在,請直接寫出點M及其對應的點R的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com