(2013•徐州)如圖,四邊形ABCD是平行四邊形,DE平分∠ADC交AB于點E,BF平分∠ABC,交CD于點F.
(1)求證:DE=BF;
(2)連接EF,寫出圖中所有的全等三角形.(不要求證明)
分析:(1)由平行四邊形的性質和已知條件證明四邊形DEBF是平行四邊形,根據(jù)平行四邊形的性質可得到DE=BF;
(2)連接EF,則圖中所有的全等三角形有:△ADE≌△CBF,△DFE≌△BEF.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴DC∥AB,
∴∠CDE=∠AED,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠ADE=∠AED,
∴AE=AD,
同理CF=CB,又AD=CB,AB=CD,
∴AE=CF,
∴DF=BE,
∴四邊形DEBF是平行四邊形,
∴DE=BF,

(2)△ADE≌△CBF,△DFE≌△BEF.
點評:本題考查了平行四邊形的性質、角平分線的特點、等腰三角形的判定和性質以及全等三角形的判定,題目難度不大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•徐州)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為
2
2
;
②當AC=3,BC=4時,AD的長為
1.8或2.5
1.8或2.5
;
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐州)如圖,在正八邊形ABCDEFGH中,四邊形BCFG的面積為20cm2,則正八邊形的面積為
40
40
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐州)如圖,點A、B、C在⊙O上,若∠C=30°,則∠AOB的度數(shù)為
60
60
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐州)如圖,二次函數(shù)y=
1
2
x2+bx-
3
2
的圖象與x軸交于點A(-3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)請直接寫出點D的坐標:
(-3,4)
(-3,4)
;
(2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案