【題目】如圖,在△ABC中,已知AC=BC=5,AB=6,點(diǎn)E是線段AB上的動(dòng)點(diǎn)(不與端點(diǎn)重合),點(diǎn)F是線段AC上的動(dòng)點(diǎn),連接CE、EF,若在點(diǎn)E、點(diǎn)F的運(yùn)動(dòng)過程中,始終保證∠CEF=∠B.當(dāng)以點(diǎn)C為圓心,以CF為半徑的圓與AB相切時(shí),則BE的長為_________

【答案】1或5

【解析】如圖,設(shè)⊙CBA切于點(diǎn)M,則CM=CF,CM⊥BA,根據(jù)等腰三角形的三線合一的性質(zhì)可得BM=AM==3,在Rt△AMC中,根據(jù)勾股定理求得CM=CF= 4,從而得AF=1,再證明△AEF∽△BCE,根據(jù)相似三角形的性質(zhì)可得,設(shè)BE長為x,則EA長為6-x,可得,解方程求得x的值,即可得BE的長.

如圖,設(shè)⊙CBA切于點(diǎn)M,則CM=CF,CM⊥BA,

∵CA=CB,CM⊥BA,AB=6,

∴BM=AM==3,

Rt△AMC中,AC=5,AM=3,

∴CM=CF= 4,

∴AF=1,

∵CA=CB,

∴∠B=∠A,

∵∠B+∠BCE=∠CEA=∠CEF+∠FEA,

∵∠CEF=∠B,

∴∠AEF=∠BCE;

∴△AEF∽△BCE,

設(shè)BE長為x,則EA長為6-x

解得:x1=1,x2=5,

∴BE的長為15.

故答案為:15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四邊形ABCD中,點(diǎn)EAD上,∠BCE=ACD=90°,BAC=D,BC=CE

(1)求證:AC=CD

(2)若∠ACB=30°,D=45°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計(jì)要求,其中需要長為 0.8m2.5m 且粗細(xì)相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場的這種規(guī)格的鋼管每根為 6m

1)試問一根 6m 長的圓鋼管有哪些裁剪方法呢?請?zhí)顚懴驴眨ㄓ嗔献鲝U).

方法①:當(dāng)只裁剪長為 0.8m 的用料時(shí),最多可剪 根;

方法②:當(dāng)先剪下 1 2.5m 的用料時(shí),余下部分最多能剪 0.8m 長的用料 根;

方法③:當(dāng)先剪下 2 2.5m 的用料時(shí),余下部分最多能剪 0.8m 長的用料 根.

2)分別用(1)中的方法②和方法③各裁剪多少根 6m 長的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料?

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要 6m 長的鋼管與(2 中根數(shù)相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAC的頂點(diǎn)O在坐標(biāo)原點(diǎn),OA邊在x軸上,OA=2,AC=1,把OAC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)到O′AC′,使得點(diǎn)O′的坐標(biāo)是(1,),則在旋轉(zhuǎn)過程中線段OC掃過部分(陰影部分)的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是⊙O外的一點(diǎn),PA、PB是⊙O的兩條切線,A、B是切點(diǎn),POAB于點(diǎn)F,延長BO交⊙O于點(diǎn)C,交PA的延長交于點(diǎn)Q,連結(jié)AC.

(1)求證:ACPO;

(2)設(shè)DPB的中點(diǎn),QDAB于點(diǎn)E,若⊙O的半徑為3,CQ=2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類情況,其相關(guān)信息如下:

根據(jù)圖表解答下列問題:

1)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖樣中,產(chǎn)生的有害垃圾C所對應(yīng)的圓心角 度;

3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占13%,每回收1噸塑料類垃圾可獲得0.5噸二級原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為1000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,過點(diǎn)A(2,0)的直線y軸交于點(diǎn)B,與雙曲線交于點(diǎn)P,點(diǎn)P位于y軸左側(cè),且到y軸的距離為1,已知tan∠OAB=

(1)分別求出直線與雙曲線相應(yīng)的函數(shù)表達(dá)式;

(2)觀察圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,點(diǎn)軸上,點(diǎn)、軸上,,,點(diǎn)的坐標(biāo)是,

1)求三個(gè)頂點(diǎn)、的坐標(biāo);

2)連接、,并用含字母的式子表示的面積();

3)在(2)問的條件下,是否存在點(diǎn),使的面積等于的面積?如果存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)或不等式(組)解應(yīng)用題:

1)甲工人接到240個(gè)零件的任務(wù),工作1小時(shí)后,因要提前完成任務(wù),調(diào)來乙和甲合作,合做了5小時(shí)完成.已知甲每小時(shí)比乙少做4個(gè),那么甲、乙每小時(shí)各做多少個(gè)?

2)某工廠準(zhǔn)備購進(jìn)兩種機(jī)器共20臺(tái)用于生產(chǎn)零件,經(jīng)調(diào)查2臺(tái)型機(jī)器和1臺(tái)型機(jī)器價(jià)格為18萬元,1臺(tái)型機(jī)器和2臺(tái)型機(jī)器價(jià)格為21萬元.

①求一臺(tái)型機(jī)器和一臺(tái)型機(jī)器價(jià)格分別是多少萬元?

②已知1臺(tái)型機(jī)器每月可加工零件400個(gè),1臺(tái)型機(jī)器每月可加工零件800個(gè),經(jīng)預(yù)算購買兩種機(jī)器的價(jià)格不超過140萬元,每月兩種機(jī)器加工零件總數(shù)不低于12400個(gè),那么有哪幾種購買方案,哪種方案最省錢?

查看答案和解析>>

同步練習(xí)冊答案