【題目】為了了解全校2400名學(xué)生的閱讀興趣,從中隨機(jī)抽查了部分同學(xué),就“我最感興趣的書籍”進(jìn)行了調(diào)查:A.小說、B.散文、C.科普、D.其他(每個(gè)同學(xué)只能選擇一項(xiàng)),進(jìn)行了相關(guān)統(tǒng)計(jì),整理并繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題

(1)本次抽查中,樣本容量為______

(2)a______,b______;

(3)扇形統(tǒng)計(jì)圖中,其他類書籍所在扇形的圓心角是______°;

(4)請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)全校有多少名學(xué)生對(duì)散文感興趣

【答案】(1)50;(2)6,15;(3)72;(4)288.

【解析】1)根據(jù)小說有19人占比為38%即可求得樣本容量;

(2)用樣本容量乘以科普的比可求得b的值,再用樣本容量減去小說、科普、其他的人數(shù)即可求得a的值;

(3)用其他所占的比乘以360度即可得;

(4)2400乘以喜歡散文類所占的比例即可得.

1)樣本容量為:19÷38%=50,

故答案為:50;

(2)b=50×30%=15,

a=50-19-15-10=6,

故答案為:6,15;

(3)其他類書籍所在扇形的圓心角為:=72°,

故答案為:72;

(4)估計(jì)全校對(duì)散文感興趣的學(xué)生約有:=288.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】yax+b(其中ab是常數(shù),xy是未知數(shù))這樣的方程稱為“雅系二元一次方程”.當(dāng)yx時(shí),“雅系二元一次方程yax+b”中x的值稱為“雅系二元一次方程”的“完美值”.例如:當(dāng)yx時(shí),“雅系二元一次方程”y3x4化為x3x4,其“完美值”為x2

1)求“雅系二元一次方程”y5x+6的“完美值”;

2x3是“雅系二元一次方程”y3x+m的“完美值”,求m的值;

3)“雅系二元一次方程”ykx+1k0,k是常數(shù))存在“完美值”嗎?若存在,請(qǐng)求出其“完美值”,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點(diǎn)C在原點(diǎn),將其繞著點(diǎn)O旋轉(zhuǎn),若頂點(diǎn)A恰好落在點(diǎn)的長(zhǎng)為______;點(diǎn)B的坐標(biāo)為______直接寫結(jié)果

感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點(diǎn),點(diǎn),試求直線AB的函數(shù)表達(dá)式.

拓展研究:如圖3,在直角坐標(biāo)系中,點(diǎn),過點(diǎn)B軸,垂足為點(diǎn)A,作軸,垂足為點(diǎn)C,P是線段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線上一動(dòng)點(diǎn)問是否存在以點(diǎn)P為直角頂點(diǎn)的等腰,若存在,請(qǐng)求出此時(shí)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)把(ab2看成一個(gè)整體,合并3ab27ab2+2ab2的結(jié)果是   ;

2)已知a+b5ab),代數(shù)式   ;

3)已知:xy+x=﹣6,yxy2,求2[x+xyy2]3[xyy2y]xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場(chǎng)銷售A、B兩種型號(hào)計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺(tái)30元,40元,商場(chǎng)銷售5臺(tái)A型號(hào)和1臺(tái)B型號(hào)計(jì)算器,可獲利潤(rùn)76元;銷售6臺(tái)A型號(hào)和3臺(tái)B型號(hào)計(jì)算器,可獲利潤(rùn)120元.求商場(chǎng)銷售A、B兩種型號(hào)計(jì)算器的銷售價(jià)格分別是多少元?(利潤(rùn)=銷售價(jià)格﹣進(jìn)貨價(jià)格)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)我最喜愛的體育項(xiàng)目進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2).請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,乒乓球部分所對(duì)應(yīng)的圓心角度數(shù)為   

(4)若全校有2000名學(xué)生,則其他部分的學(xué)生人數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B30°,邊AB的垂直平分線分別交ABBC于點(diǎn)D,E,且AE平分∠BAC

1)求∠C的度數(shù);

2)若CE1,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一水果店主分兩批購(gòu)進(jìn)某一種水果,第一批所用資金為2400元,因天氣原因,水果漲價(jià),第二批所用資金是2700元,但由于第二批單價(jià)比第一批單價(jià)每箱多10元,以致購(gòu)買的數(shù)量比第一批少25%

1)該水果店主購(gòu)進(jìn)第一批這種水果的單價(jià)是多少元?

2)該水果店主計(jì)兩批水果的售價(jià)均定為每箱40元,實(shí)際銷售時(shí)按計(jì)劃無損耗售完第一批后,發(fā)現(xiàn)第二批水果品質(zhì)不如第一批,于是該店主將售價(jià)下降a%銷售,結(jié)果還是出現(xiàn)了20%的損耗,但這兩批水果銷售完后仍賺了不低于1716元,求a的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案