【題目】按如圖所示的程序計(jì)算:若開始輸入的x值為﹣2,則最后輸出的結(jié)果是( 。
A.352
B.160
C.112
D.198
【答案】B
【解析】解:∵x=﹣2<0,∴代入代數(shù)式x2+6x計(jì)算得,(﹣2)2+6×(﹣2)=﹣8<100,
∴將x=﹣8代入繼續(xù)計(jì)算得,(﹣8)2+6×(﹣8)=16<100,
∴需將x=16代入繼續(xù)計(jì)算,注意x=16>0,
所以應(yīng)該代入計(jì)算得,結(jié)果為160>100,
∴所以直接輸出結(jié)果為160.
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用代數(shù)式求值的相關(guān)知識(shí)可以得到問題的答案,需要掌握求代數(shù)式的值,一般是先將代數(shù)式化簡(jiǎn),然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. ﹣2x2﹣3x2=﹣5x2 B. 6x2y3+2xy2=3xy
C. 2x33x2=6x6 D. (a+b)2=a2﹣2ab+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把函數(shù)y=x的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變,得到函數(shù)y=2x的圖象;也可以把函數(shù)y=x的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)y=2x的圖象.
類似地,我們可以認(rèn)識(shí)其他函數(shù).
(1)把函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?/span> 倍,橫坐標(biāo)不變,得到函數(shù)的圖象;也可以把函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span> 倍,縱坐標(biāo)不變,得到函數(shù)的圖象.
(2)已知下列變化:①向下平移2個(gè)單位長(zhǎng)度;②向右平移1個(gè)單位長(zhǎng)度;③向右平移個(gè)單位長(zhǎng)度;④縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變;⑤橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變;⑥橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變.
(Ⅰ)函數(shù)的圖象上所有的點(diǎn)經(jīng)過④→②→①,得到函數(shù) 的圖象;
(Ⅱ)為了得到函數(shù)的圖象,可以把函數(shù)的圖象上所有的點(diǎn) .
A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥
(3)函數(shù)的圖象可以經(jīng)過怎樣的變化得到函數(shù)的圖象?(寫出一種即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=,CD=BC,請(qǐng)求出GE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中沒有實(shí)數(shù)根的是( )
A.x2﹣x﹣1=0B.x2+2x+1=0
C.2019x2+11x﹣20=0D.x2﹣2x+7=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:善于思考的小軍在解方程組時(shí),采用了一種“整體代換”的解法:將方程②變形:4x+10y+y=5 即2(2x+5y)+y=5③
把方程①帶入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程組的解為.
請(qǐng)你解決以下問題:(1)模仿小軍的“整體代換”法解方程組;
(2)已知x,y滿足方程組.
(i)求的值;
(ii)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com