【題目】行駛中的汽車,在剎車后由于慣性的作用,還要向前方滑行一段距離才能停止,這段距離稱為剎車距離,為了測定某種型號的汽車的剎車性能(車速不超過140 km/h),對這種汽車進行測試,測得數(shù)據(jù)如下表:

剎車時車速/km·h1

0

10

20

30

40

50

60

剎車距離/m

0

0.3

1.0

2.1

3.6

5.5

7.8

(1)以車速為x軸,以剎車距離為y軸,建立平面直角坐標系,根據(jù)上表對應值作出函數(shù)的大致圖象;

(2)觀察圖象.估計函數(shù)的類型,并確定一個滿足這些數(shù)據(jù)的函數(shù)解析式;

(3)該型號汽車在國道發(fā)生了一次交通事故,現(xiàn)場測得剎車距離為46.5 m,推測剎車時的車速是多少?請問事故發(fā)生時,汽車是超速行駛還是正常行駛?

【答案】(1)見解析;(2)函數(shù)關(guān)系式為y=0.002x2+0.01x(0≤x≤140);(3)事故發(fā)生時汽車超速行駛.

【解析】

試題(1)依題意描點連線即可.

2)設(shè)拋物線為,再根據(jù)表格中所給數(shù)據(jù)可得方程

,解出a,b,c即可.

3)當y=46.5時,代入函數(shù)關(guān)系式解出x的值,根據(jù)題意進行取舍即可

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】三角形ABC,AB=5, ,BC邊上的高AD=4,BC=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

如圖在等邊三角形ABC中,線段AMBC邊上的中線,動點D在直線AM上時,以CD為一邊在CD的下方作等邊三角形CDE,連接BE

1)填空:∠CAM   

2)若點D在線段AM上時,求證:△ADC≌△BEC;

3)當動點D在直線AM上時,設(shè)直線BE與直線AM的交點為O,

當點D在線段AM上時,求∠AOB的度數(shù);

當動點D在直線AM上時,試判斷∠AOB是否為定值?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在第1A1BC中,∠B20°,A1BCB;在邊A1B上任取一點D,延長CA1A2,使A1A2A1D,得到第2A1A2D;在邊A2D上任取一點E,延長A1A2A3,使A2A3A2E,得到第3A2A3E,按此做法繼續(xù)下去,第2019個等腰三角形的底角度數(shù)是______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC 是等邊三角形,點 P 在△ABC 內(nèi),PA=2,將△PAB 繞點 A 逆時針旋轉(zhuǎn)得到△P1AC,則 P1P 的長等于( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EFAB于點E,交AC于點F.DBC邊的中點,M為線段EF上一個動點,則BDM的周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數(shù)的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】夏季空調(diào)銷售供不應求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點,接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺,以后每天生產(chǎn)的空調(diào)都比前一天多2臺,由于機器損耗等原因,當日生產(chǎn)的空調(diào)數(shù)量達到50臺后,每多生產(chǎn)一臺,當天生產(chǎn)的所有空調(diào),平均每臺成本就增加20元.

(1)設(shè)第天生產(chǎn)空調(diào)臺,直接寫出之間的函數(shù)解析式,并寫出自變量的取值范圍.

(2)若每臺空調(diào)的成本價(日生產(chǎn)量不超過50臺時)為2000元,訂購價格為每臺2920元,設(shè)第天的利潤為元,試求之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,∠BAC=90°AB=AC.MN是過點A的直線,BDMN DCEMNE.

1)求證:BD=AE.

2)若將MN繞點A旋轉(zhuǎn),使MNBC相交于點G(如圖2),其他條件不變,求證:BD=AE.

3)在(2)的情況下,若CE的延長線過AB的中點F(如圖3),連接GF,求證:∠AFE=BFG.

查看答案和解析>>

同步練習冊答案