證明:如圖(基本圖形),兩個(gè)直角三角形的公共直角邊為AD,則AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知以下基本事實(shí):①對(duì)頂角相等;②一條直線截兩條平行直線所得的同位角相等;③兩條直線被第三條直線所截,若同位角相等,則這兩條直線平行;④全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等.
(1)在利用以上基本事實(shí)作為依據(jù)來(lái)證明命題“兩直線平行,內(nèi)錯(cuò)角相等”時(shí),必須要用的基本事實(shí)有
①②
(填入序號(hào)即可);
(2)根據(jù)在(1)中的選擇,結(jié)合所給圖形,請(qǐng)你證明命題“兩直線平行,內(nèi)錯(cuò)角相等”.
已知:如圖,
a∥b,直線a、b被直線c所截

求證:
∠1=∠2

證明:
∵a∥b,
∴∠1=∠3(兩直線平行,同位角相等).
∵∠3=∠2(對(duì)頂角相等),
∴∠1=∠2(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究與應(yīng)用:在學(xué)習(xí)幾何時(shí),我們可以通過(guò)分離和構(gòu)造基本圖形,將幾何“模塊”化.例如在相似三角形中,K字形是非常重要的基本圖形,可以建立如下的“模塊”(如圖①):
(1)請(qǐng)就圖①證明上述“模塊”的合理性.已知:∠A=∠D=∠BCE=90°,求證:△ABC∽△DCE;
(2)請(qǐng)直接利用上述“模塊”的結(jié)論解決下面兩個(gè)問(wèn)題:
①如圖②,已知點(diǎn)A(-2,1),點(diǎn)B在直線y=-2x+3上運(yùn)動(dòng),若∠AOB=90°,求此時(shí)點(diǎn)B的坐標(biāo);
②如圖③,過(guò)點(diǎn)A(-2,1)作x軸與y軸的平行線,交直線y=-2x+3于點(diǎn)C、D,求點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,BO、CO分別為∠ABC和∠ACB的平分線,我們易得∠BOC=90°+
12
∠A(不必證明,本題可直接運(yùn)用);在圖②中,當(dāng)BO′、CO′分別為∠ABC和∠ACB的外角平分線時(shí),求∠BO′C與∠A的數(shù)量關(guān)系.我們可以利用“轉(zhuǎn)化”的思想,將未知的∠BO′C轉(zhuǎn)化為已知的∠BOC:如圖②,作BO、CO平分∠ABC和∠ACB.

(1)在圖②中存在如圖③的基本圖形:點(diǎn)A、B、D在同一直線上,且BO、BO′分別平分∠ABC和∠DBC,試證明:BO⊥BO′;
(2)試直接利用上述基本圖形的結(jié)論,猜想并證明圖②中∠BO′C與∠A的數(shù)量關(guān)系;
(3)如圖④,BP、CP分別為內(nèi)角∠ABC和外角∠ACF的平分線,試運(yùn)用上述轉(zhuǎn)化的思想猜想并證明∠BPC與∠A的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 滬科九年級(jí)版 2009-2010學(xué)年 第10期 總第166期 滬科版 題型:047

證明:如圖(基本圖形),兩個(gè)直角三角形的公共直角邊為AD,則AD

查看答案和解析>>

同步練習(xí)冊(cè)答案