(1)如圖1,點(diǎn)B、M、C在同一直線上,以BM、BC為一邊,在直線BC的兩側(cè)作等邊△ABC和等邊△BMN,直線AM、CN交于點(diǎn)O,則∠AOC=______度(直接寫出答案);
(2)如圖2,把△BMN繞點(diǎn)B逆時針旋轉(zhuǎn)任意角度,∠AOC的度數(shù)是否變化,驗(yàn)證你的結(jié)論;
(3)如圖3,正方形ABCD和正方形BMNE有公共頂點(diǎn)B,把正方形BMNE繞點(diǎn)B旋轉(zhuǎn)任意角度,AM、CN交于點(diǎn)O,求∠AOC的度數(shù).
【答案】分析:(1)由△ABC和△BMN是等邊三角形,易證得△ABM≌△CBN,即可得∠BAM=∠BCN,繼而可證得△ABM∽△COM,則可求得∠AOC=∠ABM=60°;
(2)由△ABC和△BMN是等邊三角形,易證得△ABM≌△CBN,即可得∠BAM=∠BCN,繼而可證得△ABM∽△COM,則可求得∠AOC=∠ABM=60°;
(3)由正方形ABCD和正方形BMNE中,∠ABC=∠EBM=90°,AB=BC,BM=BE,易證得△ABM≌△CBE,繼而可得△ABF∽△CFO,則可求得∠AOC的度數(shù).
解答:解:(1)∵△ABC和△BMN是等邊三角形,
∴AB=BC,BM=BN,∠ABC=∠MBN=60°,
∵在△ABM和△CBN中,
,
∴△ABM≌△CBN(SAS),
∴∠BAM=∠BCN,
∵∠AMB=∠CMO,
∴△ABM∽△COM,
∴∠AOC=∠ABM=60°;
故答案為:60;

(2)∠AOC的度數(shù)不變,仍為60°.
理由:∵△ABC和△BMN是等邊三角形,
∴AB=BC,BM=BN,∠ABC=∠MBN=60°,
∴∠ABC+∠MBC=∠MBN+∠MBC,
即∠CBN=∠ABM,
∵在△ABM和△CBN中,
,
∴△ABM≌△CBN(SAS),
∴∠BAM=∠BCN,
又∵∠AEB=∠CEO,
∴△AEB∽△CED,
∴∠EOC=∠ABC=60°;

(3)∵正方形ABCD和正方形BMNE中,∠ABC=∠EBM=90°,AB=BC,BM=BE,
∴∠ABC+∠CBM=∠EBM+∠CBM,
即∠ABM=∠CBE,
∵在△ABM和△CBE中,
,
∴△ABM≌△CBE(SAS),
∴∠BAM=∠BCE,
又∵∠AFB=∠CFO,
∴△ABF∽△CFO,
∴∠AOC=∠ABC=90°.
點(diǎn)評:此題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì)以及正方形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、若二次函數(shù)y=ax2+bx+c的圖象如圖,則點(diǎn)(a+b,ac)在(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)模擬)已知:點(diǎn)A、B都在半徑為9的圓O上,P是射線OA上一點(diǎn),以PB為半徑的圓P與圓O相交的另一個交點(diǎn)為C,直線OB與圓P相交的另一個交點(diǎn)為D,cos∠AOB=
23

(1)求:公共弦BC的長度;
(2)如圖,當(dāng)點(diǎn)D在線段OB的延長線上時,設(shè)AP=x,BD=y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)如果直線PD與射線CB相交于點(diǎn)E,且△BDE與△BPE相似,求線段AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南通)如圖,經(jīng)過點(diǎn)A(0,-4)的拋物線y=
1
2
x2+bx+c與x軸相交于B(-2,0),C兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y=
1
2
x2+bx+c向上平移
7
2
個單位長度,再向左平移m(m>0)個單位長度得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線l1、l2經(jīng)過K(2,2)
(1)如圖1,直線l2⊥l1于K.直線l1分別交x軸、y軸于A點(diǎn)、B點(diǎn),直線l2,分別交x軸、y軸于C、D,求OB+OC的值;
(2)在第(1)問的條件下,求S△ACK-S△OCD的值:
(3)在第(2)問的條件下,如圖2,點(diǎn)J為AK上任一點(diǎn)(J不于點(diǎn)A、K重合),過A作AE⊥DJ于E,連接EK,求∠DEK的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,這是一個五角星ABCDE,你能計(jì)算出∠A+∠B+∠C+∠D+∠E的度數(shù)嗎?為什么?(必須寫推理過程) 
(2)如圖2,如果點(diǎn)B向右移動到AC上,那么還能求出∠A+∠DBE+∠C+∠D+∠E的大小嗎?若能結(jié)果是多少?(可不寫推理過程)
(3)如圖,當(dāng)點(diǎn)B向右移動到AC的另一側(cè)時,上面的結(jié)論還成立嗎?
(4)如圖4,當(dāng)點(diǎn)B、E移動到∠CAD的內(nèi)部時,結(jié)論又如何?根據(jù)圖3或圖4,說明你計(jì)算的理由.

查看答案和解析>>

同步練習(xí)冊答案