【題目】(2016四川省成都市)如圖,在平面直角坐標xOy中,正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點A(2,﹣2).

(1)分別求這兩個函數(shù)的表達式;

(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數(shù)圖象在第四象限內(nèi)的交點為C,連接AB,AC,求點C的坐標及ABC的面積.

【答案】1y=-x,;(2)點C的坐標為(4,-1),6

【解析】試題分析:(1) 由 正比例函數(shù)的圖象與反比例函數(shù)直線的圖象都經(jīng)過點A2,-2).即可求得結論;

2)由題意得平移后直線解析式,即可知點B坐標,聯(lián)立方程組求解可得第四象限內(nèi)的交點C得坐標,割補法求解可得三角形的面積.

試題解析:(1)∵ 正比例函數(shù)的圖象與反比例函數(shù)直線的圖象都經(jīng)過點A2,-2).∴ 解得:y=-x ,

2)直線OAy=﹣x向上平移3個單位后解析式為:y=﹣x+3,則點B的坐標為(03),聯(lián)立兩函數(shù)解析式 ,解得,,∴第四象限內(nèi)的交點C的坐標為(4,﹣1),∴SABC=×(1+5)×4×5×2×2×1=6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若順次連接四邊形ABCD各邊中點所得四邊形是矩形,則四邊形ABCD必然是( )

A.菱形

B.對角線相互垂直的四邊形

C.正方形

D.對角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD中,AB=6,BC=8,點E、F分別是BC、CD邊上的點,且AEEF,BE=2,

(1)求證:AE=EF;

(2)延長EF交矩形∠BCD的外角平分線CP于點P(圖2),試求AEEP的數(shù)量關系;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點.

(1)求該拋物線的解析式;

(2)設(1)題中的拋物線上有一個動點P,當點P在拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標;

(3)設(1)題中的拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)機租賃公司共有50臺收割機,其中甲型20臺、乙型30臺,現(xiàn)將這50臺聯(lián)合收割機派往A,B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū),兩地區(qū)與該農(nóng)機公司商定的每天租賃價格如下表:

(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機天獲得的租金為y元,求y關于x的函數(shù)關系式,并寫出自變量的取值范圍:

(2)若使農(nóng)機租賃公司這50臺收割機一天所獲租金不低于79600元,為農(nóng)機租賃公司擬出一個分派方案,使該公司50臺收割機每天獲得租金最高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機摸出一個小球記下數(shù)字為y.

(1)小紅摸出標有數(shù)字3的小球的概率是 ;

(2)請用列表法或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結果,并求出點P(x,y)落在第三象限的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了美化環(huán)境,計劃在一定的時間內(nèi)完成綠化面積萬畝的任務,后來市政府調(diào)整了原定計劃,不但綠化面積要在原計劃的基礎上增加,而且要提前年完成任務,經(jīng)測算要完成新的計劃,平均每年的綠化面積必須比原計劃多萬畝,求原計劃平均每年的綠化面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線 :x軸,y軸的交點分別為A,B,直線 : y軸交于點C,直線與直線的交點為E,且點E的橫坐標為2.

1)求實數(shù)b的值;

2)設點Da,0)為x軸上的動點,過點Dx軸的垂線,分別交直線與直線于點M、N,若以點B、O、M、N為頂點的四邊形是平行四邊形,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是Rt△ABC斜邊BC上的高.

(1)尺規(guī)作圖:作∠C的平分線,交AB于點E,交AD于點F(不寫作法,必須保留作圖痕跡,標上應有的字母);

(2)在(1)的條件下,過F畫BC的平行線交AC于點H,線段FH與線段CH的數(shù)量關系如何?請予以證明;

(3)在(2)的條件下,連結DEDH.求證:ED⊥HD.

查看答案和解析>>

同步練習冊答案