【題目】如圖,矩形ABCD中,AB=10,BC=8,P為AD的中點,將△ABP沿BP翻折至△EBP(點A落到點E處),連接DE,則圖中與∠APB相等的角的個數(shù)為(
A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】解:由折疊知,∠BPE=∠APB,AP=PE, ∵點P是AD中點,
∴AP=DP,
∴PD=PE,
∴∠PDE=∠PED,
∵2∠PDE+∠DPE=180°,2∠APB+∠DPE=180°,
∴∠PDE=∠APB,
∵AD∥BC,
∴∠APB=∠CBP,
∴∠PDE=∠PED=∠BPE=∠APB=∠CBP,
故選:D.
【考點精析】利用矩形的性質(zhì)和翻折變換(折疊問題)對題目進行判斷即可得到答案,需要熟知矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,點D、E分別是BC、AD的中點,CE的延長線于則四邊形AFBD的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答下列各題

(1)化簡并求值:-(3a2-4ab)+[a2-(a+2ab)] ,其中a=-2,b=1

(2)已知多項式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值與字母x的取值無關(guān),求a、b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖l,BD是矩形ABCD的對角線,∠ABD=30,AD=1.將BCD沿射線BD方向平移到B'C'D'的位置,使B'BD中點,連接AB’,C'D,AD’,BC’,如圖2.

(1)求證:四邊形AB'C'D是菱形:

(2)四邊形ABC'D'的周長為____:

(3)將四邊形ABC'D’沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出可能拼成的矩形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】考試前,同學們總會采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對該校九年級的部分同學做了一次內(nèi)容為最適合自己的考前減壓方式的調(diào)查活動,學校將減壓方式分為五類,同學們可根據(jù)自己的情況必選且只選其中一類.學校收集整理數(shù)據(jù)后,繪制了圖1和圖2兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中信息解答下列問題:

(1)這次抽樣調(diào)查中,一共抽查了多少名學生?

(2)請補全條形統(tǒng)計圖;

(3)請計算扇形統(tǒng)計圖中享受美食所對應扇形的圓心角的度數(shù);

(4)根據(jù)調(diào)查結(jié)果,估計該校九年級500名學生中采用聽音樂來減壓方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知點M(0,2),直線y= x+4與兩坐標軸分別交于A,B兩點,P、Q分別是線段OA,AB上的動點,則PQ+MP的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當點EAD邊上移動時,折痕的端點P、Q也隨之移動;

①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B,C兩點的俯角分別為60°和35°,已知大橋BC的長度為100m,且與地面在同一水平面上.求熱氣球離地面的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin35°≈ ,cos35°≈ ,tan35°≈ , ≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB表示路燈,當身高為1.6米的小名站在離路燈1.6的D處時,他測得自己在路燈下的影長DE與身高CD相等,當小明繼續(xù)沿直線BD往前走到E點時,畫出此時小明的影子,并計算此時小明的影長.

查看答案和解析>>

同步練習冊答案