【題目】如圖,在△ABC中,AD、BE是兩條中線,則SABP:SEDP=(
A.1:2
B.1:3
C.1:4
D.2:3

【答案】C
【解析】解:∵AD、BE是兩條中線, ∴DE= AB,DE∥AB,
= ,△ABP∽△EDP,
∴SABP:SEDP=4:1,
故選:C.
【考點精析】本題主要考查了三角形中位線定理和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是拋物線y=x2﹣4x+3上的一點,以點P為圓心、1個單位長度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時,點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD,AC分別交于點E,F(xiàn),且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有三張背面完全相同的紙牌A,B,C,其中正面分別畫有三種不同的幾何圖形,小華將這3張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張,請你用畫樹狀圖或列表的方法,求摸出的兩張紙牌面上所畫幾何圖形既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=3,CD=4,點E在邊CD上,且DE=1.

(1)感知:如圖①,連接AE,過點E作EF⊥AE,交BC于點F,連接AF,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE∽△ECF;
(3)應(yīng)用:如圖③,若EF交AB邊于點F,其他條件不變,且△PEF的面積是3,則AP的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,將∠MPN繞點P從PB處開始按順時針方向旋轉(zhuǎn),PM交邊AB(或AD)于點E,PN交邊AD(或CD)于點F,當(dāng)PN旋轉(zhuǎn)至PC處時,∠MPN的旋轉(zhuǎn)隨即停止.
(1)特殊情形:如圖②,發(fā)現(xiàn)當(dāng)PM過點A時,PN也恰巧過點D,此時,△ABP△PCD(填“≌”或“~”);
(2)類比探究:如圖③,在旋轉(zhuǎn)過程中, 的值是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜邊AB上的一點O為圓心所作的半圓分別與AC、BC相切于點D,E,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,⊙O的半徑為4,則這個正六邊形的邊心距OM和 的長分別為(
A.2,
B. ,π
C.2
D.2 ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點D,過點D作DE∥BC交AC的延長線于點E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案