【題目】如圖,△ABC中,∠B的平分線與∠C的外角的平分線交于P點,PD⊥AC于D,PH⊥BA于H,(1)若點P到直線BA的距離是5cm,求點P到直線BC的距離;(2)求證:點P在∠HAC的平分線上.
【答案】(1)5cm;(2)證明見解析.
【解析】試題分析:(1)過P作PF⊥BE于F,由于BP平分∠ABC,PH⊥BA,PF⊥BE,則根據(jù)角平分線的性質即可得到PH=PF=5cm;
(2)根據(jù)角平分線的性質得PF=PD,則PD=PH,于是根據(jù)到角的兩邊距離相等的點在這個角的平分線上得到AP平分∠HAD.
試題解析:(1)解:過P作PF⊥BE于F,如圖,∵BP平分∠ABC,PH⊥BA于H,PF⊥BE于F,∴PH=PF=5cm,∴點P到直線BC的距離為5cm;(2)證明:∵CP平分∠ACE,PD⊥AC于D,
PF⊥BE于F,∴PF=PD,∴PD=PH,∴AP平分∠HAC.
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質進行了探究,探究過程如下,請補充完整.
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表:
x | … | ﹣3 | - | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出2條函數(shù)的性質;
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點,所對應的方程x2﹣2|x|=0有
②方程x2﹣2|x|=2有 個實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一正方形AOBC,反比例函數(shù)y=經(jīng)過正方形AOBC對角線的交點,半徑為的圓內切于△ABC,則k的值為( ).
A. B.2 C.4 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2-2x-k-2=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是( )
A.k≥-3B.k≤3C.k>-3D.k<3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源,生活垃圾一般按如圖所示A、B、C、D四種分類方法回收處理,某城市環(huán)保部門為了提高宣傳實效,抽樣調查、統(tǒng)計了部分居民小區(qū)一段時間內生活垃圾的分類處理情況,并將調查統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖表:
根據(jù)圖表解答下列問題:
(1)請將條形統(tǒng)計圖補充完整;
(2)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共 噸;
(3)調查發(fā)現(xiàn),在可回收物中塑料類垃圾占,每回收1噸塑料類垃圾可獲得0.7噸二級原料.假設該城市每月產(chǎn)生的生活垃圾為5000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是等邊△ABC的AB邊上一點,過P作PE⊥AC于E,在BC的延長線上截取CQ=AP,連接PQ交AC于點D.
(1)若∠Q=28°,求∠EPD的度數(shù);
(2)求證:PD=QD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】霧霾已經(jīng)成為現(xiàn)在生活中不得不面對的重要問題,PM2.5是大氣中直徑小于或等于0.000 002 5米的顆粒物,0.000 002 5用科學記數(shù)法表示為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com