【題目】如圖,已知點E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DFM、N分別是DCDF的中點,連接MN.AB=7,BE=5,則MN=_______.

【答案】

【解析】

連接FC,根據(jù)三角形中位線定理可得FC=2MN,繼而根據(jù)四邊形ABCD,四邊形EFGB是正方形,推導得出G、BC三點共線,然后再根據(jù)勾股定理可求得FC的長,繼而可求得答案.

連接FC,∵MN分別是DC、DF的中點,

∴FC=2MN,

四邊形ABCD,四邊形EFGB是正方形,

∴∠FGB=90°,∠ABG=∠ABC=90°,FG=BE=5,BC=AB=7

∴∠GBC=∠ABG+ABC=180°,

GB、C三點共線,

GC=GB+BC=5+7=12

∴FC==13

∴MN=,

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2012次相遇地點的坐標是(

A. 2,0 B. ﹣11 C. ﹣2,1 D. ﹣1﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB和△DCE均為等腰三角形,∠ACB=∠DCE90°,點A、DE在同一直線上,CM為△DCEDE邊上的高,連接BE

1)求∠AEB的度數(shù);

2)線段CM、AEBE之間存在怎樣的數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)改善生態(tài)環(huán)境,實行生活垃圾的分類處理,將生活垃圾分成三類:廚房垃圾、可回收垃圾和其他垃圾,分別記為m,n,p,并且設置了相應的垃圾箱,“廚房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C.

(1)若將三類垃圾隨機投入三類垃圾箱,請用畫樹狀圖的方法求垃圾投放正確的概率;

(2)為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機抽取了小區(qū)三類垃圾箱中總共1 000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):

A

B

C

m

400

100

100

n

30

240

30

p

20

20

60

請根據(jù)以上信息,試估計“廚房垃圾”投放正確的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是( 。

A. c>﹣1 B. b>0 C. 2a+b≠0 D. 9a+c>3b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD,尺規(guī)作圖:以點A為圓心,AB的長為半徑畫弧交AD于點F,分別以點B,F為圓心,以大于 BF的長為半徑畫弧交于點G,做射線AGBC與點E,若BF=12,AB=10,則AE的長為( ).

A.17B.16C.15D.14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)某廠制作甲、乙兩種環(huán)保包裝盒。已知同樣用6m的材料制成甲盒的個數(shù)比制成乙盒的個數(shù)少2個,且制成一個甲盒比制作一個乙盒需要多用20%的材料。

1)求制作每個甲盒、乙盒各用多少材料?

2)如果制作甲、乙兩種包裝盒3000個,且甲盒的數(shù)量不少于乙盒數(shù)量的2倍,那么請寫出所需材料總長度與甲盒數(shù)量之間的函數(shù)關(guān)系式,并求出最少需要多少米材料。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,作斜邊AB上中線CD,得到第1個三角形ACD于點E,作斜邊DB上中線EF,得到第2個三角形DEF;依次作下去則第1個三角形的面積等于______,第n個三角形的面積等于______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的⊙OBC于點D,過點DEFAC于點E,交AB的延長線于點F

1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;

2)如果AB=5,BC=6,求DE的長.

查看答案和解析>>

同步練習冊答案